Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
800
1.28k
label
class label
3 classes
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
End of preview. Expand in Data Studio

Dynamic Objects Dataset

This dataset is proposed by NVFi, and used by FreeGave and TRACE.

Structure

The structure of the dataset is as:

DynObjects
| - data
| | - fallingball
| | | - train: serves as training data
| | | - val: used for evaluating novel view interpolation
| | | - test: used for evaluating future extrapolation
| | | - transforms_train.json: camera poses and other meta informations for training set
| | | - transforms_val.json: camera poses and other meta informations for novel view interpolation task
| | | - transforms_test.json: camera poses and other meta informations for future extrapolation task
| | | - points3d.ply: randomly initialized points for 3D Gaussians
| | - bat
| | - telescope
| | - fan
| | - whale
| | - shark

Citation

If you find this dataset helpful, please consider citing:

@article{li2023nvfi,
  title={NVFi: Neural Velocity Fields for 3D Physics Learning from Dynamic Videos}, 
  author={Jinxi Li and Ziyang Song and Bo Yang},
  year={2023},
  journal={NeurIPS}
}
Downloads last month
118