image_name
string
image_id
string
number
string
image_path
string
image
image
label
string
IMG_20190107_170707.jpg
1IMG_20190107_170707
1
Fruits_Dataset_Train/1/IMG_20190107_170707.jpg
11111000000000000000
IMG_20190107_172054_BURST009.jpg
1IMG_20190107_172054_BURST009
1
Fruits_Dataset_Train/1/IMG_20190107_172054_BURST009.jpg
11111000000000000000
IMG_20190107_165906_1.jpg
1IMG_20190107_165906_1
1
Fruits_Dataset_Train/1/IMG_20190107_165906_1.jpg
11111000000000000000
IMG_473.jpg
1IMG_473
1
Fruits_Dataset_Train/1/IMG_473.jpg
00000000001111100000
IMG_315.jpg
1IMG_315
1
Fruits_Dataset_Train/1/IMG_315.jpg
01000011100000000000
IMG_20190107_165322.jpg
1IMG_20190107_165322
1
Fruits_Dataset_Train/1/IMG_20190107_165322.jpg
11111000000000000000
IMG_467.jpg
1IMG_467
1
Fruits_Dataset_Train/1/IMG_467.jpg
11111000000000000000
IMG_20190107_171431.jpg
1IMG_20190107_171431
1
Fruits_Dataset_Train/1/IMG_20190107_171431.jpg
11111000000000000000
20190107_161932.jpg
120190107_161932
1
Fruits_Dataset_Train/1/20190107_161932.jpg
11111000000000000000
IMG_498.jpg
1IMG_498
1
Fruits_Dataset_Train/1/IMG_498.jpg
01000011100000000000
IMG_20190107_164955.jpg
1IMG_20190107_164955
1
Fruits_Dataset_Train/1/IMG_20190107_164955.jpg
11111000000000000000
IMG_20190107_172110_BURST010.jpg
1IMG_20190107_172110_BURST010
1
Fruits_Dataset_Train/1/IMG_20190107_172110_BURST010.jpg
11111000000000000000
IMG_20190107_172123_BURST009.jpg
1IMG_20190107_172123_BURST009
1
Fruits_Dataset_Train/1/IMG_20190107_172123_BURST009.jpg
11111000000000000000
20190106_075644.jpg
120190106_075644
1
Fruits_Dataset_Train/1/20190106_075644.jpg
11111000000000000000
IMG_659.jpg
1IMG_659
1
Fruits_Dataset_Train/1/IMG_659.jpg
01000011100000000000
20190106_073221.jpg
120190106_073221
1
Fruits_Dataset_Train/1/20190106_073221.jpg
11111000000000000000
IMG_117.jpg
1IMG_117
1
Fruits_Dataset_Train/1/IMG_117.jpg
01000011100000000000
IMG_671.jpg
1IMG_671
1
Fruits_Dataset_Train/1/IMG_671.jpg
01000011100000000000
IMG_20190107_170539.jpg
1IMG_20190107_170539
1
Fruits_Dataset_Train/1/IMG_20190107_170539.jpg
11111000000000000000
20190106_074214.jpg
120190106_074214
1
Fruits_Dataset_Train/1/20190106_074214.jpg
11111000000000000000
IMG_665.jpg
1IMG_665
1
Fruits_Dataset_Train/1/IMG_665.jpg
01000011100000000000
IMG_20190107_171814.jpg
1IMG_20190107_171814
1
Fruits_Dataset_Train/1/IMG_20190107_171814.jpg
11111000000000000000
20190106_083105.jpg
120190106_083105
1
Fruits_Dataset_Train/1/20190106_083105.jpg
11111000000000000000
IMG_20190107_165849.jpg
1IMG_20190107_165849
1
Fruits_Dataset_Train/1/IMG_20190107_165849.jpg
11111000000000000000
IMG_20190107_171828.jpg
1IMG_20190107_171828
1
Fruits_Dataset_Train/1/IMG_20190107_171828.jpg
11111000000000000000
IMG_20190107_172047_001_COVER.jpg
1IMG_20190107_172047_001_COVER
1
Fruits_Dataset_Train/1/IMG_20190107_172047_001_COVER.jpg
11111000000000000000
20190107_172423.jpg
120190107_172423
1
Fruits_Dataset_Train/1/20190107_172423.jpg
11111000000000000000
20190106_084911.jpg
120190106_084911
1
Fruits_Dataset_Train/1/20190106_084911.jpg
11111000000000000000
IMG_20190107_172027_BURST005.jpg
1IMG_20190107_172027_BURST005
1
Fruits_Dataset_Train/1/IMG_20190107_172027_BURST005.jpg
11111000000000000000
IMG_20190107_171350_1.jpg
1IMG_20190107_171350_1
1
Fruits_Dataset_Train/1/IMG_20190107_171350_1.jpg
11111000000000000000
IMG_20190107_165726.jpg
1IMG_20190107_165726
1
Fruits_Dataset_Train/1/IMG_20190107_165726.jpg
11111000000000000000
IMG_20190107_171747.jpg
1IMG_20190107_171747
1
Fruits_Dataset_Train/1/IMG_20190107_171747.jpg
11111000000000000000
IMG_20190107_172101_BURST019.jpg
1IMG_20190107_172101_BURST019
1
Fruits_Dataset_Train/1/IMG_20190107_172101_BURST019.jpg
11111000000000000000
IMG_20190107_170014_1.jpg
1IMG_20190107_170014_1
1
Fruits_Dataset_Train/1/IMG_20190107_170014_1.jpg
11111000000000000000
IMG_20190107_165901.jpg
1IMG_20190107_165901
1
Fruits_Dataset_Train/1/IMG_20190107_165901.jpg
11111000000000000000
20190106_072922.jpg
120190106_072922
1
Fruits_Dataset_Train/1/20190106_072922.jpg
11111000000000000000
IMG_20190107_172004_BURST012.jpg
1IMG_20190107_172004_BURST012
1
Fruits_Dataset_Train/1/IMG_20190107_172004_BURST012.jpg
11111000000000000000
IMG_20190107_172004_BURST006.jpg
1IMG_20190107_172004_BURST006
1
Fruits_Dataset_Train/1/IMG_20190107_172004_BURST006.jpg
11111000000000000000
IMG_20190107_165915.jpg
1IMG_20190107_165915
1
Fruits_Dataset_Train/1/IMG_20190107_165915.jpg
11111000000000000000
20190107_171843.jpg
120190107_171843
1
Fruits_Dataset_Train/1/20190107_171843.jpg
11111000000000000000
IMG_20190107_171812_1.jpg
1IMG_20190107_171812_1
1
Fruits_Dataset_Train/1/IMG_20190107_171812_1.jpg
11111000000000000000
20190106_075917.jpg
120190106_075917
1
Fruits_Dataset_Train/1/20190106_075917.jpg
11111000000000000000
IMG_20190107_165929.jpg
1IMG_20190107_165929
1
Fruits_Dataset_Train/1/IMG_20190107_165929.jpg
11111000000000000000
IMG_20190107_165518.jpg
1IMG_20190107_165518
1
Fruits_Dataset_Train/1/IMG_20190107_165518.jpg
11111000000000000000
20190107_171328.jpg
120190107_171328
1
Fruits_Dataset_Train/1/20190107_171328.jpg
11111000000000000000
20190106_075532.jpg
120190106_075532
1
Fruits_Dataset_Train/1/20190106_075532.jpg
11111000000000000000
20190106_073143.jpg
120190106_073143
1
Fruits_Dataset_Train/1/20190106_073143.jpg
11111000000000000000
20190107_172147.jpg
120190107_172147
1
Fruits_Dataset_Train/1/20190107_172147.jpg
11111000000000000000
20190107_172153.jpg
120190107_172153
1
Fruits_Dataset_Train/1/20190107_172153.jpg
11111000000000000000
20190106_075526.jpg
120190106_075526
1
Fruits_Dataset_Train/1/20190106_075526.jpg
11111000000000000000
IMG_249.jpg
1IMG_249
1
Fruits_Dataset_Train/1/IMG_249.jpg
00000000001111100000
20190106_073631.jpg
120190106_073631
1
Fruits_Dataset_Train/1/20190106_073631.jpg
11111000000000000000
20190107_165349.jpg
120190107_165349
1
Fruits_Dataset_Train/1/20190107_165349.jpg
11111000000000000000
IMG_507.jpg
1IMG_507
1
Fruits_Dataset_Train/1/IMG_507.jpg
00000000001111100000
IMG_20190107_171551.jpg
1IMG_20190107_171551
1
Fruits_Dataset_Train/1/IMG_20190107_171551.jpg
11111000000000000000
IMG_20190107_165554_1.jpg
1IMG_20190107_165554_1
1
Fruits_Dataset_Train/1/IMG_20190107_165554_1.jpg
11111000000000000000
IMG_261.jpg
1IMG_261
1
Fruits_Dataset_Train/1/IMG_261.jpg
00000000001111100000
20190106_074604.jpg
120190106_074604
1
Fruits_Dataset_Train/1/20190106_074604.jpg
11111000000000000000
IMG_275.jpg
1IMG_275
1
Fruits_Dataset_Train/1/IMG_275.jpg
11111000000000000000
IMG_20190107_165256.jpg
1IMG_20190107_165256
1
Fruits_Dataset_Train/1/IMG_20190107_165256.jpg
11111000000000000000
IMG_513.jpg
1IMG_513
1
Fruits_Dataset_Train/1/IMG_513.jpg
01000011100000000000
IMG_20190107_172017_BURST014.jpg
1IMG_20190107_172017_BURST014
1
Fruits_Dataset_Train/1/IMG_20190107_172017_BURST014.jpg
11111000000000000000
20190106_074837.jpg
120190106_074837
1
Fruits_Dataset_Train/1/20190106_074837.jpg
11111000000000000000
IMG_20190107_172042_BURST014.jpg
1IMG_20190107_172042_BURST014
1
Fruits_Dataset_Train/1/IMG_20190107_172042_BURST014.jpg
11111000000000000000
20190106_074823.jpg
120190106_074823
1
Fruits_Dataset_Train/1/20190106_074823.jpg
11111000000000000000
20190106_073802.jpg
120190106_073802
1
Fruits_Dataset_Train/1/20190106_073802.jpg
11111000000000000000
20190106_073816.jpg
120190106_073816
1
Fruits_Dataset_Train/1/20190106_073816.jpg
11111000000000000000
20190106_080746.jpg
120190106_080746
1
Fruits_Dataset_Train/1/20190106_080746.jpg
11111000000000000000
IMG_20190107_171525_1.jpg
1IMG_20190107_171525_1
1
Fruits_Dataset_Train/1/IMG_20190107_171525_1.jpg
11111000000000000000
20190106_080747.jpg
120190106_080747
1
Fruits_Dataset_Train/1/20190106_080747.jpg
11111000000000000000
20190106_073803.jpg
120190106_073803
1
Fruits_Dataset_Train/1/20190106_073803.jpg
11111000000000000000
20190106_074822.jpg
120190106_074822
1
Fruits_Dataset_Train/1/20190106_074822.jpg
11111000000000000000
IMG_20190107_171810_2.jpg
1IMG_20190107_171810_2
1
Fruits_Dataset_Train/1/IMG_20190107_171810_2.jpg
11111000000000000000
IMG_20190107_172042_BURST015.jpg
1IMG_20190107_172042_BURST015
1
Fruits_Dataset_Train/1/IMG_20190107_172042_BURST015.jpg
11111000000000000000
IMG_20190107_172017_BURST015.jpg
1IMG_20190107_172017_BURST015
1
Fruits_Dataset_Train/1/IMG_20190107_172017_BURST015.jpg
11111000000000000000
IMG_274.jpg
1IMG_274
1
Fruits_Dataset_Train/1/IMG_274.jpg
00000000001111100000
IMG_20190107_171459_1.jpg
1IMG_20190107_171459_1
1
Fruits_Dataset_Train/1/IMG_20190107_171459_1.jpg
11111000000000000000
IMG_512.jpg
1IMG_512
1
Fruits_Dataset_Train/1/IMG_512.jpg
00000000001111100000
IMG_20190107_165531.jpg
1IMG_20190107_165531
1
Fruits_Dataset_Train/1/IMG_20190107_165531.jpg
11111000000000000000
20190106_073618.jpg
120190106_073618
1
Fruits_Dataset_Train/1/20190106_073618.jpg
11111000000000000000
IMG_20190107_171550.jpg
1IMG_20190107_171550
1
Fruits_Dataset_Train/1/IMG_20190107_171550.jpg
11111000000000000000
20190107_171315.jpg
120190107_171315
1
Fruits_Dataset_Train/1/20190107_171315.jpg
11111000000000000000
IMG_20190107_165243.jpg
1IMG_20190107_165243
1
Fruits_Dataset_Train/1/IMG_20190107_165243.jpg
11111000000000000000
20190107_172634.jpg
120190107_172634
1
Fruits_Dataset_Train/1/20190107_172634.jpg
11111000000000000000
20190107_165348.jpg
120190107_165348
1
Fruits_Dataset_Train/1/20190107_165348.jpg
11111000000000000000
IMG_20190107_164613.jpg
1IMG_20190107_164613
1
Fruits_Dataset_Train/1/IMG_20190107_164613.jpg
11111000000000000000
IMG_20190107_172229_BURST019.jpg
1IMG_20190107_172229_BURST019
1
Fruits_Dataset_Train/1/IMG_20190107_172229_BURST019.jpg
11111000000000000000
20190106_084723.jpg
120190106_084723
1
Fruits_Dataset_Train/1/20190106_084723.jpg
11111000000000000000
IMG_20190107_165928.jpg
1IMG_20190107_165928
1
Fruits_Dataset_Train/1/IMG_20190107_165928.jpg
11111000000000000000
IMG_20190107_165914.jpg
1IMG_20190107_165914
1
Fruits_Dataset_Train/1/IMG_20190107_165914.jpg
11111000000000000000
IMG_20190107_172004_BURST007.jpg
1IMG_20190107_172004_BURST007
1
Fruits_Dataset_Train/1/IMG_20190107_172004_BURST007.jpg
11111000000000000000
IMG_20190107_172004_BURST013.jpg
1IMG_20190107_172004_BURST013
1
Fruits_Dataset_Train/1/IMG_20190107_172004_BURST013.jpg
11111000000000000000
IMG_20190107_172101_BURST018.jpg
1IMG_20190107_172101_BURST018
1
Fruits_Dataset_Train/1/IMG_20190107_172101_BURST018.jpg
11111000000000000000
IMG_20190107_165733.jpg
1IMG_20190107_165733
1
Fruits_Dataset_Train/1/IMG_20190107_165733.jpg
11111000000000000000
IMG_20190107_171746.jpg
1IMG_20190107_171746
1
Fruits_Dataset_Train/1/IMG_20190107_171746.jpg
11111000000000000000
IMG_20190107_170600_1.jpg
1IMG_20190107_170600_1
1
Fruits_Dataset_Train/1/IMG_20190107_170600_1.jpg
11111000000000000000
IMG_20190107_165041.jpg
1IMG_20190107_165041
1
Fruits_Dataset_Train/1/IMG_20190107_165041.jpg
11111000000000000000
20190106_074413.jpg
120190106_074413
1
Fruits_Dataset_Train/1/20190106_074413.jpg
11111000000000000000
IMG_20190107_171752.jpg
1IMG_20190107_171752
1
Fruits_Dataset_Train/1/IMG_20190107_171752.jpg
11111000000000000000
IMG_20190107_164439.jpg
1IMG_20190107_164439
1
Fruits_Dataset_Train/1/IMG_20190107_164439.jpg
11111000000000000000

DeepFruit Dataset

Dataset Details

This dataset contains total of 21,122 fully labeled images, featuring 20 different kinds of fruits. It is structured into an 80% training set (16,899 images) and a 20% testing set (4,223 images), facilitating a ready-to-use framework for model training and evaluation.

Additionally, there are two CSV files that label the types of fruits depicted in each image.

Dataset Description

The "DeepFruit" dataset is a comprehensive collection designed for the advancement of research in fruit detection, recognition, and classification. It encompasses a wide array of applications, including but not limited to, fruit recognition systems and calorie estimation. A total of 21,122 fully labeled images, featuring 20 different kinds of fruits. It is structured into an 80% training set (16,899 images) and a 20% testing set (4,223 images), facilitating a ready-to-use framework for model training and evaluation. This dataset provides a valuable resource for researchers aiming to develop automated systems leveraging deep learning, computer vision, and machine learning techniques for fruit image analysis.

  • Language(s): en
  • License: Mendeley License: CC BY 4.0

Dataset Sources

Data: https://data.mendeley.com/datasets/5prc54r4rt/1

Paper: https://www.sciencedirect.com/science/article/pii/S2352340923006248#sec0003

Uses

Convert Fruit Dataset From Image to PIL.

Direct Use

This section describes suitable use cases for the dataset.

Dataset Structure

"Train" & "Test": Datasets

"image_id": datasets.Value("string")

"number" - folder number:datasets.Value("int32")

"image": datasets.Image()

"image_path": datasets.Value("string")

"label": datasets.Value("string")

Curation Rationale

It lies in its foundational role for enabling advanced machine learning applications in dietary and health management. By converting fruit images to the PIL format, it prepares data for analysis that could lead to innovations in recognizing and understanding fruit characteristics. This groundwork is crucial for developing technologies that assist in dietary planning, nutritional education, and managing health conditions through better food choices, thereby having a broad positive effect on public health and awareness.

Data Collection and Processing

 Image Format: All images are expected to be in JPEG format. Non-JPEG files are excluded during the data processing phase, ensuring consistency in file format.
 
 Label Extraction: Labels are extracted from separate CSV files (Labels_Train.csv and Labels_Test.csv), which map image names to their corresponding fruit labels. This method ensures that labels are organized and accessible.
 
 Data Splitting: The dataset is split into training and testing sets, as indicated by the separate ZIP files for train and test data. This standard practice facilitates the evaluation of model performance on unseen data.
 
 Python Imaging Library (PIL): Used for opening and manipulating images in the Python Imaging Library format. This choice is made for its wide adoption and ease of integration with other Python libraries for data science and machine learning tasks.
 
 Datasets Library from Hugging Face: Facilitates the creation, distribution, and loading of the dataset. This library provides a standardized way to work with datasets, including features for splitting, processing, and accessing dataset information.

Supported Tasks

The fruit images were captured under various conditions, including different plate sizes, shapes, and situations, as well as varying angles, brightness levels, and distances.

  1. Foundation for Advanced ML Models/ Algorithms Training: By converting the fruit dataset into PIL format, we ensure that the data is in a uniform, accessible format that is compatible with various machine learning and deep learning libraries. This standardization is vital for the efficient training, validation, and testing of different classification models.

  2. Enables Comprehensive Analysis: The dataset, featuring a wide variety of fruit images, is essential for developing a deep understanding of fruit characteristics. This includes not only basic identification but also detailed analyses such as sugar content, calorie count, and vitamin composition, which are crucial for dietary planning and health management.

  3. Basis for Practical Applications: The dataset's conversion and subsequent use in machine learning model training are not academic exercises but are intended for real-world applications. The insights gained from this project could significantly impact dietary planning, particularly for individuals with specific health considerations like diabetes, by providing accurate, detailed information about fruit characteristics.

Bias, Risks, and Limitations

 Representation Bias: Given the dataset comprises 20 diverse fruit types across 8 combinations, there might be an underrepresentation of certain fruits, particularly those that are less common or indigenous to specific regions. This could lead to a model trained on this dataset performing less accurately on fruit types or varieties not included or underrepresented.
 
 Misclassification Risk: In critical applications where accurate fruit identification is crucial (e.g., dietary management apps, agricultural sorting mechanisms), misclassification could lead to adverse outcomes. This risk is heightened if the dataset contains mislabeled examples or if the model struggles with fruits that have similar appearances.
 
 Scope of Application: The dataset's utility is primarily confined to the domain of fruit recognition and classification. It may not be suitable for more nuanced tasks within agricultural technology, such as detecting fruit diseases or assessing ripeness, unless supplemented with additional, specialized data.
Downloads last month
29
Edit dataset card