Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
1K - 10K
License:
File size: 8,490 Bytes
0183bcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MCTest: Machine comprehension test: http://research.microsoft.com/mct"""
import os
import datasets
_CITATION = """\
@inproceedings{richardson-etal-2013-mctest,
title = "{MCT}est: A Challenge Dataset for the Open-Domain Machine Comprehension of Text",
author = "Richardson, Matthew and
Burges, Christopher J.C. and
Renshaw, Erin",
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
month = oct,
year = "2013",
address = "Seattle, Washington, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D13-1020",
pages = "193--203",
}
"""
_DESCRIPTION = """\
MCTest requires machines to answer multiple-choice reading comprehension questions about fictional stories, directly tackling the high-level goal of open-domain machine comprehension.
"""
_HOMEPAGE = "https://www.aclweb.org/anthology/D13-1020/"
_DATA_URL = "http://parl.ai/downloads/mctest/mctest.tar.gz"
class MCTest(datasets.GeneratorBasedBuilder):
"""MCTest: Machine comprehension test: http://research.microsoft.com/mct"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="mc500",
version=VERSION,
description="MC 500",
),
datasets.BuilderConfig(
name="mc160",
version=VERSION,
description="MC 160",
),
]
DEFAULT_CONFIG_NAME = "mc500"
def _info(self):
if self.config.name == "mc500":
features = datasets.Features(
{
"idx": dict(
{"story": datasets.Value("string"),
"question": datasets.Value("int32")
}
),
"question": datasets.Value("string"),
"story": datasets.Value("string"),
"properties": dict(
{
"author": datasets.Value("string"),
"work_time": datasets.Value("int32"),
"quality_score": datasets.Value("int32"),
"creativity_words": datasets.Sequence(datasets.Value("string")),
}
),
"answer_options": dict(
{
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string")
}
),
"answer": datasets.Value("string"),
"question_is_multiple": datasets.Value("bool")
}
)
else:
features = datasets.Features(
{
"idx": dict(
{"story": datasets.Value("string"),
"question": datasets.Value("int32")
}
),
"question": datasets.Value("string"),
"story": datasets.Value("string"),
"properties": dict(
{
"author": datasets.Value("string"),
"work_time": datasets.Value("int32"),
}
),
"answer_options": dict(
{
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string")
}
),
"answer": datasets.Value("string"),
"question_is_multiple": datasets.Value("bool")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = os.path.join(dl_manager.download_and_extract(_DATA_URL), 'mctest')
paths = {}
for phase in ["train", "dev", "test"]:
paths[phase] = {
"data": os.path.join(data_dir, "MCTest", f"{self.config.name}.{phase}.tsv"),
"answer": os.path.join(data_dir, "MCTest", f"{self.config.name}.{phase}.ans")
}
paths["test"]["answer"] = os.path.join(data_dir, "MCTestAnswers", f"{self.config.name}.test.ans")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": paths["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": paths["dev"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": paths["test"]},
),
]
def _get_properties(self, property_str):
"""
properties is a semicolon-delimited list of property:value pairs, including
Author (anonymized author id, consistent across all files)
Work Time(s): Seconds between author accepting and submitting the task
Qual. score: The author's grammar qualification test score (% correct)
Creativity Words: Words the author was given to encourage creativity
(there are no creativity words or qual score for mc160, see paper)
:param property_str:
:return:
"""
properties = property_str.split(';')
property_data = {
"author": properties[0].split(':')[-1].strip(),
"work_time": int(properties[1].split(':')[-1].strip())
}
if self.config.name == "mc500":
property_data.update(
{
"quality_score": int(properties[2].split(':')[-1].strip()),
"creativity_words": properties[3].split(':')[-1].strip().split(',')
}
)
return property_data
def _generate_examples(self, filepath):
tab_char = '\t'
data_path = filepath['data']
ans_path = filepath['answer']
data_lines = open(data_path, encoding="utf-8").read().split('\n')[:-1]
answer_lines = open(ans_path, encoding="utf-8").read().split('\n')[:-1]
for data_line, answer_line in zip(data_lines, answer_lines):
data_line_split = data_line.split(tab_char)
story_id = data_line_split[0]
properties = self._get_properties(data_line_split[1])
story = data_line_split[2]
answers = answer_line.split('\t')
data_line_split = data_line_split[3:]
for i in range(4):
answer = answers[i]
index = i*5
multiple, question_text = [x.strip() for x in data_line_split[index].strip().split(':')]
question_is_multiple = True if multiple == "multiple" else False
answer_options = {x: y for x, y in zip(["A", "B", "C", "D"], data_line_split[index+1:index+5])}
yield f"{story_id}-{i}", {
"idx":
{"story": story_id,
"question": i
},
"question": question_text,
"story": story,
"properties": properties,
"answer_options": answer_options,
"answer": answer,
"question_is_multiple": question_is_multiple
}
|