index
int32
0
333k
hashtag
stringlengths
2
96
segmentation
stringlengths
3
119
0
AajKiBaat
Aaj Ki Baat
1
soldoutABP
soldout ABP
2
DemocracyOcuupier
Democracy Ocuupier
3
HarbaarModisarkaar
Harbaar Modisarkaar
4
MemoriesToCherish
Memories To Cherish
5
TandurMLA
Tandur MLA
6
GoodBeerWeek
Good Beer Week
7
Capres02TukangTeror
Capres 02 Tukang Teror
8
FackMissionShakti
Fack Mission Shakti
9
FarkDikhRahaHai
Fark Dikh Raha Hai
10
ArmyDogs
Army Dogs
11
HitlarJihadi
Hitlar Jihadi
12
VisMaVie
Vis Ma Vie
13
LakshyHamaraModiDubara
Lakshy Hamara Modi Dubara
14
MainBhiCHOwkidaR
Main Bhi CH Owkida R
15
MaharashtraKalyanLokSabhaPradhanUddhavThakre
Maharashtra Kalyan Lok Sabha Pradhan Uddhav Thakre
16
MachinesRCompromised
Machines R Compromised
17
KodiRamaKrishna
Kodi Rama Krishna
18
KickOutRoGo
Kick Out Ro Go
19
EliminacaoPowerCouple
Eliminacao Power Couple
20
VoteBecauseYouCan
Vote Because You Can
21
SWoB
S Wo B
22
BombaySux
Bombay Sux
23
SupportDrArunSawant
Support Dr Arun Sawant
24
GadarekPremKatha
Gadarek Prem Katha
25
TraitorousTrump
Traitorous Trump
26
VotForVBA
Vot For VBA
27
AmjadKhan
Amjad Khan
28
JayshriRammamtadidi
Jayshri Rammamtadidi
29
WestminsterCourt
Westminster Court
30
TuesdayFeelings
Tuesday Feelings
31
WhySoShy
Why So Shy
32
unemployedIndia
unemployed India
33
2xThrashing
2 x Thrashing
34
ModiFied
Modi Fied
35
LootyensKePadheLikhe
Lootyens Ke Padhe Likhe
36
HeartHeart
Heart Heart
37
PMModiinBengal
PM Modiin Bengal
38
ChaukidarChorhai
Chaukidar Chorhai
39
JaydevGaykwad
Jaydev Gaykwad
40
InvestInYou
Invest In You
41
TakingTheJobSeriously
Taking The Job Seriously
42
HomelessnessIsNotNormal
Homelessness Is Not Normal
43
WarrenHasAPlanForThat
Warren Has A Plan For That
44
NairHospital
Nair Hospital
45
SoniaGandgi
Sonia Gandgi
46
SidhiLokSabhaSeat
Sidhi Lok Sabha Seat
47
DynPro
Dyn Pro
48
ApsaraRajahmundry
Apsara Rajahmundry
49
MainNahichowkidaar
Main Nahichowkidaar
50
IndiaVsCorruptMahagthbandan
India Vs Corrupt Mahagthbandan
51
delhiMCD
delhi MCD
52
ModiWaveElec
Modi Wave Elec
53
LokShabhaElections
Lok Shabha Elections
54
WhiteOldMen
White Old Men
55
CostofViraatvacation
Costof Viraatvacation
56
MalikRiaz
Malik Riaz
57
DerSpiegel
Der Spiegel
58
ugIns
ug Ins
59
PowerProject
Power Project
60
SamCooke
Sam Cooke
61
AntuNationals
Antu Nationals
62
20RupeesCoin
20 Rupees Coin
63
HampdenSurvey
Hampden Survey
64
MITEFArab
MITEF Arab
65
DDNewsGujararti
DD News Gujararti
66
confusedRajdeep
confused Rajdeep
67
VIPs
VI Ps
68
MainBhiBagga
Main Bhi Bagga
69
MaiBhiChaukidar
Mai Bhi Chaukidar
70
ScreenShotSaturday
Screen Shot Saturday
71
igersOttawa
igers Ottawa
72
RahulPriyankaatKozhikodeAirport
Rahul Priyankaat Kozhikode Airport
73
JamshedpurinNews
Jamshedpurin News
74
SeparateBranch
Separate Branch
75
indiaExposedAtBalakot
india Exposed At Balakot
76
DataAnalytics
Data Analytics
77
04LimitedSazabys
04 Limited Sazabys
78
RahulTripathiYouth
Rahul Tripathi Youth
79
CJreform
C Jreform
80
LanguageWars
Language Wars
81
CBSEPaperLeak
CBSE Paper Leak
82
Vote4KPG
Vote 4 KPG
83
ModiChorHaiSaysIndia
Modi Chor Hai Says India
84
PleaseSupport
Please Support
85
LandReform
Land Reform
86
SalutePakArmy
Salute Pak Army
87
TrafficMonthUPP
Traffic Month UPP
88
UdyogVihar
Udyog Vihar
89
PostDev
Post Dev
90
ChangeAmericaByVoting
Change America By Voting
91
PandavVsKaurav
Pandav Vs Kaurav
92
MamathaWitch
Mamatha Witch
93
EKPostNamoKeNaam
EK Post Namo Ke Naam
94
FastestGrowing
Fastest Growing
95
NamoGoodies
Namo Goodies
96
MYVoiceMyChoice
MY Voice My Choice
97
AadhaarThug
Aadhaar Thug
98
NoToRacism
No To Racism
99
AkalshwaniShimla
Akalshwani Shimla
YAML Metadata Warning: The task_categories "structure-prediction" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, other

Dataset Card for HashSet Distant

Dataset Summary

Hashset is a new dataset consisiting on 1.9k manually annotated and 3.3M loosely supervised tweets for testing the efficiency of hashtag segmentation models. We compare State of The Art Hashtag Segmentation models on Hashset and other baseline datasets (STAN and BOUN). We compare and analyse the results across the datasets to argue that HashSet can act as a good benchmark for hashtag segmentation tasks.

HashSet Distant: 3.3M loosely collected camel cased hashtags containing hashtag and their segmentation.

Languages

Hindi and English.

Dataset Structure

Data Instances

{
  'index': 282559, 
  'hashtag': 'Youth4Nation', 
  'segmentation': 'Youth 4 Nation'
}

Dataset Creation

  • All hashtag segmentation and identifier splitting datasets on this profile have the same basic fields: hashtag and segmentation or identifier and segmentation.

  • The only difference between hashtag and segmentation or between identifier and segmentation are the whitespace characters. Spell checking, expanding abbreviations or correcting characters to uppercase go into other fields.

  • There is always whitespace between an alphanumeric character and a sequence of any special characters ( such as _ , :, ~ ).

  • If there are any annotations for named entity recognition and other token classification tasks, they are given in a spans field.

Additional Information

Citation Information

@article{kodali2022hashset,
  title={HashSet--A Dataset For Hashtag Segmentation},
  author={Kodali, Prashant and Bhatnagar, Akshala and Ahuja, Naman and Shrivastava, Manish and Kumaraguru, Ponnurangam},
  journal={arXiv preprint arXiv:2201.06741},
  year={2022}
}

Contributions

This dataset was added by @ruanchaves while developing the hashformers library.

Downloads last month
52