Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
< 1K
License:
File size: 4,886 Bytes
ede72b5 d89b79f ede72b5 d89b79f ede72b5 d89b79f ede72b5 bb6992b ede72b5 d89b79f bb6992b 8f1a7ff d5511a1 8f1a7ff d5511a1 8f1a7ff d5511a1 8f1a7ff d5511a1 8f1a7ff d5511a1 8f1a7ff d5511a1 8f1a7ff d5511a1 8f1a7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
license: mit
annotations_creators:
- no-annotation
language_creators:
- expert-generated
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
language:
- en
tags:
- blockchain
- code
- benchmark
pretty_name: LLM Blockchain Benchmark
size_categories:
- 10K<n<100K
dataset_info:
- config_name: math
features:
- name: question
dtype: string
- name: choices
sequence: string
- name: answer
dtype:
class_label:
names:
'0': A
'1': B
'2': C
'3': D
- config_name: general-reasoning
features:
- name: question
dtype: string
- name: choices
sequence: string
- name: answer
dtype:
class_label:
names:
'0': A
'1': B
'2': C
'3': D
- config_name: code
features:
- name: question
dtype: string
- name: choices
sequence: string
- name: answer
dtype:
class_label:
names:
'0': A
'1': B
'2': C
'3': D
configs:
- config_name: math
data_files:
- split: test
path: Math*
- config_name: general-reasoning
data_files:
- split: test
path: General*
- config_name: code
data_files:
- split: test
path: Coding*
---
# Dataset Card for LLM Blockchain Benchmark
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository**: [github repo]
### Dataset Summary
The Blockchain Benchmark Dataset is a comprehensive collection of data specifically curated for benchmarking Language Models (LMs) in the domain of blockchain technology. This dataset is designed to facilitate research and development in natural language understanding within the blockchain domain.
A complete list of tasks: ['general-reasoning', 'code', 'math']
### Supported Tasks and Leaderboards
| Model | Authors | Humanities | Social Science | STEM | Other | Average |
|------------------------------------|----------|:-------:|:-------:|:-------:|:-------:|:-------:|
[add tested models here]
### Languages
English
## Dataset Structure
### Data Instances
An example from code subtask looks as follows:
```
{
"question": "The defining idea of Uniswap v3 token is",
"choices": ['Concentrated Liquidity', 'Diluted Liquidity', 'Concentrated Programming', 'Optimized price ranges'],
"answer": "A"
}
```
### Data Fields
- `question`: a string feature
- `choices`: a list of 4 string features
- `answer`: a ClassLabel feature
### Data Splits
- `test`: all data under test for benchmarking
## Dataset Creation
### Curation Rationale
This dataset addresses the scarcity of benchmarks designed specifically for Language Models (LMs) in the realm of blockchain technology. With the intersection of blockchain and LM technologies gaining traction, a focused dataset becomes essential. This collection serves as a vital resource for advancing research and understanding within the dynamic blockchain landscape.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
MIT License
### Citation Information
If you find this useful in your research, please consider supporting Tensorplex [link]
```
### Contributions
Thanks to Tensorplex for adding this dataset. |