File size: 9,844 Bytes
313a961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
dir = "20-Jan-2024"
chunk_doc_size = 100000
remove_every_word_over_x_characters = 16
ignore_first_page = True
ignore_last_page = True
max_processes = 12
attempt_resume = True
remove_false_newlines = True
import re
import requests
import threading
import PyPDF2
from io import BytesIO
import time
def remove_single_newlines_with_space(text):
new_text = []
i = 0
def is_valid_char(c):
# Check if the character is a letter, space, quote or closing parenthesis
return c.isalpha() or c in {' ', '"', "'", ')', ']', '(' , '[', '-', ',', '.', '!', '?', ';', ':'} or c.isdigit()
while i < len(text):
if i > 0 and i < len(text) - 1 and text[i] == '\n':
# Check if the characters before and after the newline are valid
if is_valid_char(text[i-1]) and is_valid_char(text[i+1]):
new_text.append(' ') # Add a space instead of the newline
i += 1
continue
new_text.append(text[i])
i += 1
return ''.join(new_text)
def extract_text_from_pdf_url(pdf_url):
# Send a GET request to the URL
response = requests.get(pdf_url)
# Check if the request was successful
if response.status_code == 200:
# Read the PDF file from the response
file = BytesIO(response.content)
# Create a PDF reader object
reader = PyPDF2.PdfReader(file)
# Initialize a variable to store extracted text
text = ""
# Loop through each page in the PDF
for page in range(len(reader.pages)):
if page == 0 and ignore_first_page:
continue
if page == len(reader.pages) - 1 and ignore_last_page:
continue
# Get a specific page
pdf_page = reader.pages[page]
# Extract text from the page
text += pdf_page.extract_text()
return text
else:
return ""
# read json file
import json
print("Loading arxiv metadata")
file = open(f"{dir}/arxiv-metadata-oai-snapshot.json", "r")
# read it line by line because its a jsonl
data = []
for line in file.readlines():
# load the json
data.append(json.loads(line))
file.close()
print(f"Loaded {len(data)} documents from metadata")
to_skip = 0
chunk = 0
count = 0
print("Reading previous data to resume progress")
if attempt_resume:
# count how many lines in jsonl folder
import os
for filename in os.listdir('jsonl'):
if filename.endswith(".jsonl"):
chunk += 1
count += sum(1 for line in open(f'jsonl/{filename}', 'r'))
count -= 1 # remove the last line because it is empty
# count how many lines in failed.txt
count += sum(1 for line in open('failed.txt', 'r'))
# count how many lines in failed.jsonl
count += sum(1 for line in open('failed.jsonl', 'r'))
count -= 2 # remove the last lines because it is empty
chunk -= 1
to_skip = count
print(f"Skipping {to_skip} documents (to resume progress)")
# # id: ArXiv ID (can be used to access the paper, see below)
# # submitter: Who submitted the paper
# # authors: Authors of the paper
# # title: Title of the paper
# # comments: Additional info, such as number of pages and figures
# # journal-ref: Information about the journal the paper was published in
# # doi: [https://www.doi.org](Digital Object Identifier)
# # abstract: The abstract of the paper
# # categories: Categories / tags in the ArXiv system
# # versions: A version history
# with open(f'jsonl/arxiv_{chunk}.jsonl', 'w') as f:
# for i in range(len(data)):
# print(f"Processing {i} of {len(data)}")
# row = data[i]
# # extract text from pdf file
# text = extract_text_from_pdf_url("https://arxiv.org/pdf/" + row['id'])
# if text == "":
# with open(f'failed.txt') as w:
# w.write(row['id'] + '\n')
# f.write(json.dumps({"text": text.encode('utf-8').decode('unicode_escape')} + row) + '\n')
# if count % 100000 == 0:
# print(text)
# count+=1
# if count % chunk_doc_size == 0:
# f.close()
# chunk += 1
# f = open(f'jsonl/arxiv_{chunk}.jsonl', 'w')
import threading
import json
from unidecode import unidecode
import multiprocessing
def filter_text(text):
final_text = text.encode('utf-8', errors='replace').decode('unicode_escape', errors='ignore')
final_text = re.sub(r'\\U[\da-fA-F]{8}', '', final_text)
# remove_every_word_over_x_characters
words = final_text.split(' ')
for word in words:
if len(word) > remove_every_word_over_x_characters:
final_text = final_text.replace(word, '')
if word.count('\\') > len(word) * 0.25:
final_text = final_text.replace(word, '')
# remove_false_newlines
if remove_false_newlines:
final_text = remove_single_newlines_with_space(final_text)
final_text = final_text.replace('\\"', '')
final_text = final_text.replace('\"', '')
final_text = final_text.replace('\\', '')
final_text = final_text.replace('\f', '')
return final_text
def extract_text_process(row):
text = extract_text_from_pdf_url("https://arxiv.org/pdf/" + row['id'])
return filter_text(text)
def extract_text_process_safe(row):
try:
return extract_text_process(row)
except Exception as e:
print(e)
return ""
from queue import Empty
def process_queue(queue, count, chunk, chunk_doc_size, stop_event):
output_file = open(f'jsonl/arxiv_{chunk}.jsonl', 'a')
failed_file = open('failed.jsonl', 'a')
print("Starting queue process")
print(stop_event.is_set())
while not stop_event.is_set():
while not queue.empty():
try:
row, text = queue.get(timeout=0.5) # Timeout to check for stop event
except Empty as e:
print(e)
continue
print("Looping queue process " + str(chunk) + " " + str(queue.qsize()))
row['title'] = filter_text(row['title'])
row['abstract'] = filter_text(row['abstract'])
if len(text) < 1000:
failed_file.write(json.dumps(row) + '\n')
else:
output_file.write(json.dumps({**{"text": text}, **row}) + '\n')
count += 1
if count % chunk_doc_size == 0:
output_file.close()
chunk += 1
output_file = open(f'jsonl/arxiv_{chunk}.jsonl', 'w')
time.sleep(0.005) # Sleep
time.sleep(0.005) # Sleep
output_file.close()
failed_file.close()
def process_worker(queue, count, chunk, chunk_doc_size, stop_event):
try:
process_queue(queue, count, chunk, chunk_doc_size, stop_event)
except Exception as e:
print(f"Error in worker process: {e}")
# exit whole app
os._exit(1)
def worker(i, row, queue):
try:
text = extract_text_process_safe(row)
queue.put((row, text))
print(f"Processed {i} of {len(data)}") # Adjust this line as needed
except Exception as e:
print(f"Error in worker process: {e}")
time.sleep(0.5) # Sleep to avoid spamming requests
from concurrent.futures import ThreadPoolExecutor
def process_data(data, chunk_doc_size):
global to_skip, count, chunk
queue = multiprocessing.Manager().Queue()
stop_event = multiprocessing.Event()
stop_event.clear()
# Start the thread for processing the queue
queue_process = multiprocessing.Process(target=process_worker, args=(queue, count, chunk, chunk_doc_size, stop_event))
queue_process.start()
# Create a pool of worker threads
# with ThreadPoolExecutor(max_workers=max_processes) as executor:
# for i, row in enumerate(data):
# if i < to_skip:
# continue
# executor.submit(worker, i, row, queue)
# time.sleep(0.0001)
# Create a pool of worker processes
with multiprocessing.Pool(max_processes) as pool:
for i, row in enumerate(data):
if i < to_skip:
continue
pool.apply_async(worker, args=(i, row, queue))
time.sleep(0.0001)
# Close the pool and wait for the work to finish
pool.close()
pool.join()
# Signal the queue processing thread to stop and wait for it to finish
stop_event.set()
queue_process.join()
# output_file = open(f'jsonl/arxiv_{chunk}.jsonl', 'a')
# failed_file = open('failed.txt', 'a')
# def process_results(result):
# global count, chunk, failed_file, output_file, chunk_doc_size
# row, text = result
# if text == "":
# failed_file.write(row['id'] + '\n')
# else:
# output_file.write(json.dumps({**{"text": text}, **row}) + '\n')
# if count % 100 == 0:
# print(f"Processed {count} of {len(data)}")
# count += 1
# if count % chunk_doc_size == 0:
# output_file.close()
# chunk += 1
# output_file = open(f'jsonl/arxiv_{chunk}.jsonl', 'w')
# def process_data(data, chunk_doc_size, pool_size=20):
# global output_file, failed_file
# with multiprocessing.Pool(pool_size) as pool:
# results = [pool.apply_async(extract_text_process, args=(data[i],), callback=lambda res: process_results(res)) for i in range(to_skip, len(data))]
# for result in results:
# result.wait()
# failed_file.close()
# output_file.close()
# Example usage
process_data(data, chunk_doc_size)
|