Datasets:
Update SJP (LCI and Occlusion)
#4
by
ninabaum
- opened
- README.md +894 -320
- test.jsonl.xz +3 -0
- test_lci.jsonl.xz +3 -0
- test_occ_1.jsonl.xz +3 -0
- test_occ_2.jsonl.xz +3 -0
- test_occ_3.jsonl.xz +3 -0
- test_occ_4.jsonl.xz +3 -0
- train.jsonl.xz +3 -0
- train_mt.jsonl.xz +3 -0
- val.jsonl.xz +3 -0
README.md
CHANGED
@@ -1,338 +1,843 @@
|
|
1 |
---
|
2 |
pretty_name: Swiss-Judgment-Prediction
|
3 |
annotations_creators:
|
4 |
-
- found
|
|
|
5 |
language_creators:
|
6 |
-
- found
|
7 |
language:
|
8 |
-
- de
|
9 |
-
- fr
|
10 |
-
- it
|
11 |
-
- en
|
12 |
license:
|
13 |
-
- cc-by-sa-4.0
|
14 |
multilinguality:
|
15 |
-
- multilingual
|
16 |
size_categories:
|
17 |
-
-
|
18 |
source_datasets:
|
19 |
-
- original
|
20 |
task_categories:
|
21 |
-
- text-classification
|
22 |
task_ids: []
|
23 |
tags:
|
24 |
-
- judgement-prediction
|
|
|
25 |
dataset_info:
|
26 |
-
- config_name: de
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
dtype: string
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
names:
|
38 |
-
0: dismissal
|
39 |
-
1: approval
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
dtype: string
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
names:
|
74 |
-
0: dismissal
|
75 |
-
1: approval
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
dtype: string
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
- name: id
|
101 |
-
dtype: int32
|
102 |
-
- name: year
|
103 |
-
dtype: int32
|
104 |
-
- name: text
|
105 |
-
dtype: string
|
106 |
-
- name: label
|
107 |
-
dtype:
|
108 |
-
class_label:
|
109 |
names:
|
110 |
-
0: dismissal
|
111 |
-
1: approval
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
- name: year
|
139 |
-
dtype: int32
|
140 |
-
- name: text
|
141 |
-
dtype: string
|
142 |
-
- name: label
|
143 |
-
dtype:
|
144 |
-
class_label:
|
145 |
names:
|
146 |
-
0: dismissal
|
147 |
-
1: approval
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
- name: label
|
175 |
-
dtype:
|
176 |
-
class_label:
|
177 |
names:
|
178 |
-
0: dismissal
|
179 |
-
1: approval
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
- name: label
|
207 |
-
dtype:
|
208 |
-
class_label:
|
209 |
-
names:
|
210 |
-
0: dismissal
|
211 |
-
1: approval
|
212 |
-
- name: language
|
213 |
-
dtype: string
|
214 |
-
- name: region
|
215 |
-
dtype: string
|
216 |
-
- name: canton
|
217 |
-
dtype: string
|
218 |
-
- name: legal area
|
219 |
-
dtype: string
|
220 |
-
- name: source_language
|
221 |
-
dtype: string
|
222 |
-
splits:
|
223 |
-
- name: train
|
224 |
-
num_bytes: 201749076
|
225 |
-
num_examples: 56631
|
226 |
-
- name: validation
|
227 |
-
- name: test
|
228 |
-
download_size: 1000382331
|
229 |
-
dataset_size: 201749076
|
230 |
-
- config_name: mt_en
|
231 |
-
features:
|
232 |
-
- name: id
|
233 |
-
dtype: int32
|
234 |
-
- name: year
|
235 |
-
dtype: int32
|
236 |
-
- name: text
|
237 |
-
dtype: string
|
238 |
-
- name: label
|
239 |
-
dtype:
|
240 |
-
class_label:
|
241 |
names:
|
242 |
-
0: dismissal
|
243 |
-
1: approval
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
- name: label
|
271 |
-
dtype:
|
272 |
-
class_label:
|
273 |
names:
|
274 |
-
0: dismissal
|
275 |
-
1: approval
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
names:
|
310 |
-
0: dismissal
|
311 |
-
1: approval
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
num_examples: 17357
|
332 |
-
download_size: 1000382331
|
333 |
-
dataset_size: 922935511
|
334 |
-
---
|
335 |
|
|
|
336 |
# Dataset Card for "SwissJudgmentPrediction"
|
337 |
|
338 |
## Table of Contents
|
@@ -373,11 +878,16 @@ dataset_info:
|
|
373 |
|
374 |
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
|
375 |
|
|
|
376 |
### Supported Tasks and Leaderboards
|
377 |
|
378 |
SwissJudgmentPrediction can be used for the legal judgment prediction task.
|
379 |
|
380 |
-
|
|
|
|
|
|
|
|
|
381 |
|
382 |
### Languages
|
383 |
|
@@ -385,7 +895,8 @@ Switzerland has four official languages with 3 languages (German, French and Ita
|
|
385 |
|
386 |
## Dataset Structure
|
387 |
|
388 |
-
In version 2 we added machine translated data using [EasyNMT](https://github.com/UKPLab/EasyNMT) for all documents into German, French, Italian and English as an additional training set.
|
|
|
389 |
|
390 |
### Data Instances
|
391 |
|
@@ -446,11 +957,11 @@ The following data fields are provided for documents (`train`, `validation`, `te
|
|
446 |
`language`: (**str**) one of (de, fr, it) \
|
447 |
`region`: (**str**) the region of the lower court \
|
448 |
`canton`: (**str**) the canton of the lower court \
|
449 |
-
`legal area`: (**str**) the legal area of the case
|
450 |
|
451 |
|
452 |
|
453 |
-
**Monolingual use of the dataset**
|
454 |
|
455 |
The following data fields are provided for documents (`train`, `validation`, `test`):
|
456 |
|
@@ -461,12 +972,45 @@ The following data fields are provided for documents (`train`, `validation`, `te
|
|
461 |
`language`: (**str**) one of (de, fr, it) \
|
462 |
`region`: (**str**) the region of the lower court \
|
463 |
`canton`: (**str**) the canton of the lower court \
|
464 |
-
`legal area`: (**str**) the legal area of the case
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
|
467 |
### Data Splits
|
468 |
|
469 |
-
| Language | Subset | Number of Documents (Training/Validation/Test) |
|
470 |
|------------|------------|------------------------------------------------|
|
471 |
| German | **de** | 35'452 / 4'705 / 9'725 |
|
472 |
| French | **fr** | 21'179 / 3'095 / 6'820 |
|
@@ -476,18 +1020,36 @@ The following data fields are provided for documents (`train`, `validation`, `te
|
|
476 |
| MT French | **mt_fr** | 38'524 / 0 / 0 |
|
477 |
| MT Italian | **mt_it** | 56'631 / 0 / 0 |
|
478 |
| MT All | **all+mt** | 238'818 / 8'208 / 17'357 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
## Dataset Creation
|
481 |
|
482 |
### Curation Rationale
|
483 |
|
484 |
-
The dataset was curated by Niklaus et al. (2021).
|
485 |
|
486 |
### Source Data
|
487 |
|
488 |
#### Initial Data Collection and Normalization
|
489 |
|
490 |
-
The original data are available at the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
|
491 |
|
492 |
#### Who are the source language producers?
|
493 |
|
@@ -497,12 +1059,13 @@ Switzerland has four official languages with 3 languages (German, French and Ita
|
|
497 |
|
498 |
#### Annotation process
|
499 |
|
500 |
-
The decisions have been annotated with the binarized judgment outcome using parsers and regular expressions.
|
501 |
|
502 |
#### Who are the annotators?
|
503 |
|
504 |
Joel Niklaus and Adrian Jörg annotated the binarized judgment outcomes.
|
505 |
Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
|
|
|
506 |
|
507 |
### Personal and Sensitive Information
|
508 |
|
@@ -568,6 +1131,17 @@ and the new citation
|
|
568 |
}
|
569 |
```
|
570 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
### Contributions
|
572 |
|
573 |
-
Thanks to [@joelniklaus](https://github.com/joelniklaus) for adding this dataset.
|
|
|
1 |
---
|
2 |
pretty_name: Swiss-Judgment-Prediction
|
3 |
annotations_creators:
|
4 |
+
- found
|
5 |
+
- expert-generated
|
6 |
language_creators:
|
7 |
+
- found
|
8 |
language:
|
9 |
+
- de
|
10 |
+
- fr
|
11 |
+
- it
|
12 |
+
- en
|
13 |
license:
|
14 |
+
- cc-by-sa-4.0
|
15 |
multilinguality:
|
16 |
+
- multilingual
|
17 |
size_categories:
|
18 |
+
- 100K<n<1M
|
19 |
source_datasets:
|
20 |
+
- original
|
21 |
task_categories:
|
22 |
+
- text-classification
|
23 |
task_ids: []
|
24 |
tags:
|
25 |
+
- judgement-prediction
|
26 |
+
- explainability-judgment-prediction
|
27 |
dataset_info:
|
28 |
+
- config_name: de
|
29 |
+
features:
|
30 |
+
- name: id
|
31 |
+
dtype: int32
|
32 |
+
- name: year
|
33 |
+
dtype: int32
|
34 |
+
- name: text
|
35 |
+
dtype: string
|
36 |
+
- name: label
|
37 |
+
dtype:
|
38 |
+
class_label:
|
39 |
+
names:
|
40 |
+
"0": dismissal
|
41 |
+
"1": approval
|
42 |
+
- name: language
|
43 |
+
dtype: string
|
44 |
+
- name: region
|
45 |
+
dtype: string
|
46 |
+
- name: canton
|
47 |
+
dtype: string
|
48 |
+
- name: legal area
|
49 |
+
dtype: string
|
50 |
+
- name: source_language
|
51 |
+
dtype: string
|
52 |
+
splits:
|
53 |
+
- name: train
|
54 |
+
num_bytes: 104270719
|
55 |
+
num_examples: 35458
|
56 |
+
- name: validation
|
57 |
+
num_bytes: 12131878
|
58 |
+
num_examples: 4705
|
59 |
+
- name: test
|
60 |
+
num_bytes: 26056177
|
61 |
+
num_examples: 9725
|
62 |
+
download_size: 1000382331
|
63 |
+
dataset_size: 142458774
|
64 |
+
- config_name: fr
|
65 |
+
features:
|
66 |
+
- name: id
|
67 |
+
dtype: int32
|
68 |
+
- name: year
|
69 |
+
dtype: int32
|
70 |
+
- name: text
|
71 |
+
dtype: string
|
72 |
+
- name: label
|
73 |
+
dtype:
|
74 |
+
class_label:
|
75 |
+
names:
|
76 |
+
"0": dismissal
|
77 |
+
"1": approval
|
78 |
+
- name: language
|
79 |
+
dtype: string
|
80 |
+
- name: region
|
81 |
+
dtype: string
|
82 |
+
- name: canton
|
83 |
+
dtype: string
|
84 |
+
- name: legal area
|
85 |
+
dtype: string
|
86 |
+
- name: source_language
|
87 |
+
dtype: string
|
88 |
+
splits:
|
89 |
+
- name: train
|
90 |
+
num_bytes: 96807957
|
91 |
+
num_examples: 21179
|
92 |
+
- name: validation
|
93 |
+
num_bytes: 13031904
|
94 |
+
num_examples: 3095
|
95 |
+
- name: test
|
96 |
+
num_bytes: 33318359
|
97 |
+
num_examples: 6820
|
98 |
+
download_size: 1000382331
|
99 |
+
dataset_size: 143158220
|
100 |
+
- config_name: it
|
101 |
+
features:
|
102 |
+
- name: id
|
103 |
+
dtype: int32
|
104 |
+
- name: year
|
105 |
+
dtype: int32
|
106 |
+
- name: text
|
107 |
+
dtype: string
|
108 |
+
- name: label
|
109 |
+
dtype:
|
110 |
+
class_label:
|
111 |
+
names:
|
112 |
+
"0": dismissal
|
113 |
+
"1": approval
|
114 |
+
- name: language
|
115 |
+
dtype: string
|
116 |
+
- name: region
|
117 |
+
dtype: string
|
118 |
+
- name: canton
|
119 |
+
dtype: string
|
120 |
+
- name: legal area
|
121 |
+
dtype: string
|
122 |
+
- name: source_language
|
123 |
+
dtype: string
|
124 |
+
splits:
|
125 |
+
- name: train
|
126 |
+
num_bytes: 10773516
|
127 |
+
num_examples: 3072
|
128 |
+
- name: validation
|
129 |
+
num_bytes: 1045551
|
130 |
+
num_examples: 408
|
131 |
+
- name: test
|
132 |
+
num_bytes: 2474761
|
133 |
+
num_examples: 812
|
134 |
+
download_size: 1000382331
|
135 |
+
dataset_size: 14293828
|
136 |
+
- config_name: mt_de
|
137 |
+
features:
|
138 |
+
- name: id
|
139 |
+
dtype: int32
|
140 |
+
- name: year
|
141 |
+
dtype: int32
|
142 |
+
- name: text
|
143 |
+
dtype: string
|
144 |
+
- name: label
|
145 |
+
dtype:
|
146 |
+
class_label:
|
147 |
+
names:
|
148 |
+
"0": dismissal
|
149 |
+
"1": approval
|
150 |
+
- name: language
|
151 |
+
dtype: string
|
152 |
+
- name: region
|
153 |
+
dtype: string
|
154 |
+
- name: canton
|
155 |
+
dtype: string
|
156 |
+
- name: legal area
|
157 |
+
dtype: string
|
158 |
+
- name: source_language
|
159 |
+
dtype: string
|
160 |
+
splits:
|
161 |
+
- name: train
|
162 |
+
num_bytes: 106990696
|
163 |
+
num_examples: 24251
|
164 |
+
- name: validation
|
165 |
+
- name: test
|
166 |
+
download_size: 1000382331
|
167 |
+
dataset_size: 106990696
|
168 |
+
- config_name: mt_fr
|
169 |
+
features:
|
170 |
+
- name: id
|
171 |
+
dtype: int32
|
172 |
+
- name: year
|
173 |
+
dtype: int32
|
174 |
+
- name: text
|
175 |
+
dtype: string
|
176 |
+
- name: label
|
177 |
+
dtype:
|
178 |
+
class_label:
|
179 |
+
names:
|
180 |
+
"0": dismissal
|
181 |
+
"1": approval
|
182 |
+
- name: language
|
183 |
+
dtype: string
|
184 |
+
- name: region
|
185 |
+
dtype: string
|
186 |
+
- name: canton
|
187 |
+
dtype: string
|
188 |
+
- name: legal area
|
189 |
+
dtype: string
|
190 |
+
- name: source_language
|
191 |
+
dtype: string
|
192 |
+
splits:
|
193 |
+
- name: train
|
194 |
+
num_bytes: 117932134
|
195 |
+
num_examples: 38524
|
196 |
+
- name: validation
|
197 |
+
- name: test
|
198 |
+
download_size: 1000382331
|
199 |
+
dataset_size: 117932134
|
200 |
+
- config_name: mt_it
|
201 |
+
features:
|
202 |
+
- name: id
|
203 |
+
dtype: int32
|
204 |
+
- name: year
|
205 |
+
dtype: int32
|
206 |
+
- name: text
|
207 |
+
dtype: string
|
208 |
+
- name: label
|
209 |
+
dtype:
|
210 |
+
class_label:
|
211 |
+
names:
|
212 |
+
"0": dismissal
|
213 |
+
"1": approval
|
214 |
+
- name: language
|
215 |
+
dtype: string
|
216 |
+
- name: region
|
217 |
+
dtype: string
|
218 |
+
- name: canton
|
219 |
+
dtype: string
|
220 |
+
- name: legal area
|
221 |
+
dtype: string
|
222 |
+
- name: source_language
|
223 |
+
dtype: string
|
224 |
+
splits:
|
225 |
+
- name: train
|
226 |
+
num_bytes: 201749076
|
227 |
+
num_examples: 56631
|
228 |
+
- name: validation
|
229 |
+
- name: test
|
230 |
+
download_size: 1000382331
|
231 |
+
dataset_size: 201749076
|
232 |
+
- config_name: mt_en
|
233 |
+
features:
|
234 |
+
- name: id
|
235 |
+
dtype: int32
|
236 |
+
- name: year
|
237 |
+
dtype: int32
|
238 |
+
- name: text
|
239 |
+
dtype: string
|
240 |
+
- name: label
|
241 |
+
dtype:
|
242 |
+
class_label:
|
243 |
+
names:
|
244 |
+
"0": dismissal
|
245 |
+
"1": approval
|
246 |
+
- name: language
|
247 |
+
dtype: string
|
248 |
+
- name: region
|
249 |
+
dtype: string
|
250 |
+
- name: canton
|
251 |
+
dtype: string
|
252 |
+
- name: legal area
|
253 |
+
dtype: string
|
254 |
+
- name: source_language
|
255 |
+
dtype: string
|
256 |
+
splits:
|
257 |
+
- name: train
|
258 |
+
num_bytes: 196352783
|
259 |
+
num_examples: 59703
|
260 |
+
- name: validation
|
261 |
+
- name: test
|
262 |
+
download_size: 1000382331
|
263 |
+
dataset_size: 196352783
|
264 |
+
- config_name: lci_de
|
265 |
+
features:
|
266 |
+
- name: id
|
267 |
+
dtype: int32
|
268 |
+
- name: year
|
269 |
+
dtype: int32
|
270 |
+
- name: text
|
271 |
+
dtype: string
|
272 |
+
- name: label
|
273 |
+
dtype:
|
274 |
+
class_label:
|
275 |
+
names:
|
276 |
+
"0": dismissal
|
277 |
+
"1": approval
|
278 |
+
- name: language
|
279 |
+
dtype: string
|
280 |
+
- name: region
|
281 |
+
dtype: string
|
282 |
+
- name: canton
|
283 |
+
dtype: string
|
284 |
+
- name: legal area
|
285 |
+
dtype: string
|
286 |
+
- name: explainability_label
|
287 |
+
dtype: string
|
288 |
+
- name: lower_court
|
289 |
+
dtype: string
|
290 |
+
splits:
|
291 |
+
- name: test
|
292 |
+
num_examples: 378
|
293 |
+
- config_name: lci_fr
|
294 |
+
features:
|
295 |
+
- name: id
|
296 |
+
dtype: int32
|
297 |
+
- name: year
|
298 |
+
dtype: int32
|
299 |
+
- name: text
|
300 |
+
dtype: string
|
301 |
+
- name: label
|
302 |
+
dtype:
|
303 |
+
class_label:
|
304 |
+
names:
|
305 |
+
"0": dismissal
|
306 |
+
"1": approval
|
307 |
+
- name: language
|
308 |
+
dtype: string
|
309 |
+
- name: region
|
310 |
+
dtype: string
|
311 |
+
- name: canton
|
312 |
+
dtype: string
|
313 |
+
- name: legal area
|
314 |
+
dtype: string
|
315 |
+
- name: source_language
|
316 |
+
dtype: string
|
317 |
+
- name: explainability_label
|
318 |
+
dtype: string
|
319 |
+
- name: lower_court
|
320 |
+
dtype: string
|
321 |
+
splits:
|
322 |
+
- name: test
|
323 |
+
num_examples: 414
|
324 |
+
- config_name: lci_it
|
325 |
+
features:
|
326 |
+
- name: id
|
327 |
+
dtype: int32
|
328 |
+
- name: year
|
329 |
+
dtype: int32
|
330 |
+
- name: text
|
331 |
+
dtype: string
|
332 |
+
- name: label
|
333 |
+
dtype: null
|
334 |
+
class_label:
|
335 |
+
names:
|
336 |
+
"0": dismissal
|
337 |
+
"1": approval
|
338 |
+
- name: language
|
339 |
+
dtype: string
|
340 |
+
- name: region
|
341 |
+
dtype: string
|
342 |
+
- name: canton
|
343 |
+
dtype: string
|
344 |
+
- name: legal area
|
345 |
+
dtype: string
|
346 |
+
- name: explainability_label
|
347 |
+
dtype: string
|
348 |
+
- name: lower_court
|
349 |
dtype: string
|
350 |
+
splits:
|
351 |
+
- name: test
|
352 |
+
num_examples: 335
|
353 |
+
- config_name: occ_de_1
|
354 |
+
features:
|
355 |
+
- name: id
|
356 |
+
dtype: int32
|
357 |
+
- name: year
|
358 |
+
dtype: int32
|
359 |
+
- name: text
|
360 |
+
dtype: string
|
361 |
+
- name: label
|
362 |
+
dtype: null
|
363 |
+
class_label:
|
364 |
+
names:
|
365 |
+
"0": dismissal
|
366 |
+
"1": approval
|
367 |
+
- name: language
|
368 |
+
dtype: string
|
369 |
+
- name: region
|
370 |
+
dtype: string
|
371 |
+
- name: canton
|
372 |
+
dtype: string
|
373 |
+
- name: legal area
|
374 |
+
dtype: string
|
375 |
+
- name: explainability_label
|
376 |
+
dtype: string
|
377 |
+
- name: occluded_text
|
378 |
+
dtype: string
|
379 |
+
splits:
|
380 |
+
- name: test
|
381 |
+
num_examples: 427
|
382 |
+
- config_name: occ_fr_1
|
383 |
+
features:
|
384 |
+
- name: id
|
385 |
+
dtype: int32
|
386 |
+
- name: year
|
387 |
+
dtype: int32
|
388 |
+
- name: text
|
389 |
+
dtype: string
|
390 |
+
- name: label
|
391 |
+
dtype: null
|
392 |
+
class_label: null
|
393 |
names:
|
394 |
+
"0": dismissal
|
395 |
+
"1": approval
|
396 |
+
- name: language
|
397 |
+
dtype: string
|
398 |
+
- name: region
|
399 |
+
dtype: string
|
400 |
+
- name: canton
|
401 |
+
dtype: string
|
402 |
+
- name: legal area
|
403 |
+
dtype: string
|
404 |
+
- name: explainability_label
|
405 |
+
dtype: string
|
406 |
+
- name: occluded_text
|
407 |
dtype: string
|
408 |
+
splits:
|
409 |
+
- name: test
|
410 |
+
num_examples: 307
|
411 |
+
- config_name: occ_it_1
|
412 |
+
features:
|
413 |
+
- name: id
|
414 |
+
dtype: int32
|
415 |
+
- name: year
|
416 |
+
dtype: int32
|
417 |
+
- name: text
|
418 |
+
dtype: string
|
419 |
+
- name: label
|
420 |
+
dtype: null
|
421 |
+
class_label:
|
422 |
+
names:
|
423 |
+
"0": dismissal
|
424 |
+
"1": approval
|
425 |
+
- name: language
|
426 |
+
dtype: string
|
427 |
+
- name: region
|
428 |
+
dtype: string
|
429 |
+
- name: canton
|
430 |
+
dtype: string
|
431 |
+
- name: legal area
|
432 |
+
dtype: string
|
433 |
+
- name: explainability_label
|
434 |
+
dtype: string
|
435 |
+
- name: occluded_text
|
436 |
+
dtype: string
|
437 |
+
splits:
|
438 |
+
- name: test
|
439 |
+
num_examples: 299
|
440 |
+
- config_name: occ_de_2
|
441 |
+
features:
|
442 |
+
- name: id
|
443 |
+
dtype: int32
|
444 |
+
- name: year
|
445 |
+
dtype: int32
|
446 |
+
- name: text
|
447 |
+
dtype: string
|
448 |
+
- name: label
|
449 |
+
dtype: null
|
450 |
+
class_label: null
|
451 |
names:
|
452 |
+
"0": dismissal
|
453 |
+
"1": approval
|
454 |
+
- name: language
|
455 |
+
dtype: string
|
456 |
+
- name: region
|
457 |
+
dtype: string
|
458 |
+
- name: canton
|
459 |
+
dtype: string
|
460 |
+
- name: legal area
|
461 |
+
dtype: string
|
462 |
+
- name: explainability_label
|
463 |
+
dtype: string
|
464 |
+
- name: occluded_text
|
465 |
dtype: string
|
466 |
+
splits:
|
467 |
+
- name: test
|
468 |
+
num_examples: 1366
|
469 |
+
- config_name: occ_fr_2
|
470 |
+
features:
|
471 |
+
- name: id
|
472 |
+
dtype: int32
|
473 |
+
- name: year
|
474 |
+
dtype: int32
|
475 |
+
- name: text
|
476 |
+
dtype: string
|
477 |
+
- name: label
|
478 |
+
dtype: null
|
479 |
+
class_label: null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
names:
|
481 |
+
"0": dismissal
|
482 |
+
"1": approval
|
483 |
+
- name: language
|
484 |
+
dtype: string
|
485 |
+
- name: region
|
486 |
+
dtype: string
|
487 |
+
- name: canton
|
488 |
+
dtype: string
|
489 |
+
- name: legal area
|
490 |
+
dtype: string
|
491 |
+
- name: explainability_label
|
492 |
+
dtype: string
|
493 |
+
- name: occluded_text
|
494 |
+
dtype: string
|
495 |
+
splits: null
|
496 |
+
- name: test
|
497 |
+
num_examples: 854
|
498 |
+
- config_name: occ_it_2
|
499 |
+
features:
|
500 |
+
- name: id
|
501 |
+
dtype: int32
|
502 |
+
- name: year
|
503 |
+
dtype: int32
|
504 |
+
- name: text
|
505 |
+
dtype: string
|
506 |
+
- name: label
|
507 |
+
dtype: null
|
508 |
+
class_label: null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
names:
|
510 |
+
"0": dismissal
|
511 |
+
"1": approval
|
512 |
+
- name: language
|
513 |
+
dtype: string
|
514 |
+
- name: region
|
515 |
+
dtype: string
|
516 |
+
- name: canton
|
517 |
+
dtype: string
|
518 |
+
- name: legal area
|
519 |
+
dtype: string
|
520 |
+
- name: explainability_label
|
521 |
+
dtype: string
|
522 |
+
- name: occluded_text
|
523 |
+
dtype: string
|
524 |
+
splits:
|
525 |
+
- name: test
|
526 |
+
num_examples: 919
|
527 |
+
- config_name: occ_de_3
|
528 |
+
features:
|
529 |
+
- name: id
|
530 |
+
dtype: int32
|
531 |
+
- name: year
|
532 |
+
dtype: int32
|
533 |
+
- name: text
|
534 |
+
dtype: string
|
535 |
+
- name: label
|
536 |
+
dtype: null
|
537 |
+
class_label: null
|
|
|
|
|
|
|
538 |
names:
|
539 |
+
"0": dismissal
|
540 |
+
"1": approval
|
541 |
+
- name: language
|
542 |
+
dtype: string
|
543 |
+
- name: region
|
544 |
+
dtype: string
|
545 |
+
- name: canton
|
546 |
+
dtype: string
|
547 |
+
- name: legal area
|
548 |
+
dtype: string
|
549 |
+
- name: explainability_label
|
550 |
+
dtype: string
|
551 |
+
- name: occluded_text
|
552 |
+
dtype: string
|
553 |
+
splits:
|
554 |
+
- name: test
|
555 |
+
num_examples: 3567
|
556 |
+
- config_name: occ_fr_3
|
557 |
+
features:
|
558 |
+
- name: id
|
559 |
+
dtype: int32
|
560 |
+
- name: year
|
561 |
+
dtype: int32
|
562 |
+
- name: text
|
563 |
+
dtype: string
|
564 |
+
- name: label
|
565 |
+
dtype: null
|
566 |
+
class_label: null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
names:
|
568 |
+
"0": dismissal
|
569 |
+
"1": approval
|
570 |
+
- name: language
|
571 |
+
dtype: string
|
572 |
+
- name: region
|
573 |
+
dtype: string
|
574 |
+
- name: canton
|
575 |
+
dtype: string
|
576 |
+
- name: legal area
|
577 |
+
dtype: string
|
578 |
+
- name: explainability_label
|
579 |
+
dtype: string
|
580 |
+
- name: occluded_text
|
581 |
+
dtype: string
|
582 |
+
splits:
|
583 |
+
- name: test
|
584 |
+
num_examples: 1926
|
585 |
+
- config_name: occ_it_3
|
586 |
+
features:
|
587 |
+
- name: id
|
588 |
+
dtype: int32
|
589 |
+
- name: year
|
590 |
+
dtype: int32
|
591 |
+
- name: text
|
592 |
+
dtype: string
|
593 |
+
- name: label
|
594 |
+
dtype: null
|
595 |
+
class_label: null
|
|
|
|
|
|
|
596 |
names:
|
597 |
+
"0": dismissal
|
598 |
+
"1": approval
|
599 |
+
- name: language
|
600 |
+
dtype: string
|
601 |
+
- name: region
|
602 |
+
dtype: string
|
603 |
+
- name: canton
|
604 |
+
dtype: string
|
605 |
+
- name: legal area
|
606 |
+
dtype: string
|
607 |
+
- name: explainability_label
|
608 |
+
dtype: string
|
609 |
+
- name: occluded_text
|
610 |
+
dtype: string
|
611 |
+
splits:
|
612 |
+
- name: test
|
613 |
+
num_examples: 2493
|
614 |
+
- config_name: occ_de_4
|
615 |
+
features:
|
616 |
+
- name: id
|
617 |
+
dtype: int32
|
618 |
+
- name: year
|
619 |
+
dtype: int32
|
620 |
+
- name: text
|
621 |
+
dtype: string
|
622 |
+
- name: label
|
623 |
+
dtype:
|
624 |
+
class_label: null
|
625 |
+
names:
|
626 |
+
"0": dismissal
|
627 |
+
"1": approval
|
628 |
+
- name: language
|
629 |
+
dtype: string
|
630 |
+
- name: region
|
631 |
+
dtype: string
|
632 |
+
- name: canton
|
633 |
+
dtype: string
|
634 |
+
- name: legal area
|
635 |
+
dtype: string
|
636 |
+
- name: explainability_label
|
637 |
+
dtype: string
|
638 |
+
- name: occluded_text
|
639 |
+
dtype: string
|
640 |
+
splits:
|
641 |
+
- name: test
|
642 |
+
num_examples: 7235
|
643 |
+
- config_name: occ_fr_4
|
644 |
+
features:
|
645 |
+
- name: id
|
646 |
+
dtype: int32
|
647 |
+
- name: year
|
648 |
+
dtype: int32
|
649 |
+
- name: text
|
650 |
+
dtype: string
|
651 |
+
- name: label
|
652 |
+
dtype: null
|
653 |
+
class_label:
|
654 |
+
names:
|
655 |
+
"0": dismissal
|
656 |
+
"1": approval
|
657 |
+
- name: language
|
658 |
+
dtype: string
|
659 |
+
- name: region
|
660 |
+
dtype: string
|
661 |
+
- name: canton
|
662 |
+
dtype: string
|
663 |
+
- name: legal area
|
664 |
+
dtype: string
|
665 |
+
- name: explainability_label
|
666 |
+
dtype: string
|
667 |
+
- name: occluded_text
|
668 |
+
dtype: string
|
669 |
+
splits:
|
670 |
+
- name: test
|
671 |
+
num_examples: 3279
|
672 |
+
- config_name: occ_it_4
|
673 |
+
features:
|
674 |
+
- name: id
|
675 |
+
dtype: int32
|
676 |
+
- name: year
|
677 |
+
dtype: int32
|
678 |
+
- name: text
|
679 |
+
dtype: string
|
680 |
+
- name: label
|
681 |
+
dtype: null
|
682 |
+
class_label:
|
683 |
+
names:
|
684 |
+
"0": dismissal
|
685 |
+
"1": approval
|
686 |
+
- name: language
|
687 |
+
dtype: string
|
688 |
+
- name: region
|
689 |
+
dtype: string
|
690 |
+
- name: canton
|
691 |
+
dtype: string
|
692 |
+
- name: legal area
|
693 |
+
dtype: string
|
694 |
+
- name: explainability_label
|
695 |
+
dtype: string
|
696 |
+
- name: occluded_text
|
697 |
+
dtype: string
|
698 |
+
splits:
|
699 |
+
- name: test
|
700 |
+
num_examples: 5733
|
701 |
+
- config_name: all
|
702 |
+
features:
|
703 |
+
- name: id
|
704 |
+
dtype: int32
|
705 |
+
- name: year
|
706 |
+
dtype: int32
|
707 |
+
- name: text
|
708 |
+
dtype: string
|
709 |
+
- name: label
|
710 |
+
dtype:
|
711 |
+
class_label:
|
712 |
+
names:
|
713 |
+
"0": dismissal
|
714 |
+
"1": approval
|
715 |
+
- name: language
|
716 |
+
dtype: string
|
717 |
+
- name: region
|
718 |
+
dtype: string
|
719 |
+
- name: canton
|
720 |
+
dtype: string
|
721 |
+
- name: legal area
|
722 |
+
dtype: string
|
723 |
+
- name: source_language
|
724 |
+
dtype: string
|
725 |
+
splits:
|
726 |
+
- name: train
|
727 |
+
num_bytes: 211852192
|
728 |
+
num_examples: 59709
|
729 |
+
- name: validation
|
730 |
+
num_bytes: 26209333
|
731 |
+
num_examples: 8208
|
732 |
+
- name: test
|
733 |
+
num_bytes: 61849297
|
734 |
+
num_examples: 17357
|
735 |
+
download_size: 1000382331
|
736 |
+
dataset_size: 299910822
|
737 |
+
- config_name: all+mt
|
738 |
+
features:
|
739 |
+
- name: id
|
740 |
+
dtype: int32
|
741 |
+
- name: year
|
742 |
+
dtype: int32
|
743 |
+
- name: text
|
744 |
+
dtype: string
|
745 |
+
- name: label
|
746 |
+
dtype:
|
747 |
+
class_label:
|
748 |
+
names:
|
749 |
+
"0": dismissal
|
750 |
+
"1": approval
|
751 |
+
- name: language
|
752 |
+
dtype: string
|
753 |
+
- name: region
|
754 |
+
dtype: string
|
755 |
+
- name: canton
|
756 |
+
dtype: string
|
757 |
+
- name: legal area
|
758 |
+
dtype: string
|
759 |
+
- name: source_language
|
760 |
+
dtype: string
|
761 |
+
splits:
|
762 |
+
- name: train
|
763 |
+
num_bytes: 834876881
|
764 |
+
num_examples: 238818
|
765 |
+
- name: validation
|
766 |
+
num_bytes: 26209333
|
767 |
+
num_examples: 8208
|
768 |
+
- name: test
|
769 |
+
num_bytes: 61849297
|
770 |
+
num_examples: 17357
|
771 |
+
download_size: 1000382331
|
772 |
+
dataset_size: 922935511
|
773 |
+
- config_name: all+lci
|
774 |
+
features:
|
775 |
+
- name: id
|
776 |
+
dtype: int32
|
777 |
+
- name: year
|
778 |
+
dtype: int32
|
779 |
+
- name: text
|
780 |
+
dtype: string
|
781 |
+
- name: label
|
782 |
+
dtype:
|
783 |
+
class_label:
|
784 |
+
names:
|
785 |
+
"0": dismissal
|
786 |
+
"1": approval
|
787 |
+
- name: language
|
788 |
+
dtype: string
|
789 |
+
- name: region
|
790 |
+
dtype: string
|
791 |
+
- name: canton
|
792 |
+
dtype: string
|
793 |
+
- name: legal area
|
794 |
+
dtype: string
|
795 |
+
- name: explainability_label
|
796 |
+
dtype: string
|
797 |
+
- name: lower_court
|
798 |
+
dtype: string
|
799 |
+
splits:
|
800 |
+
- name: train
|
801 |
+
num_examples: 59709
|
802 |
+
- name: validation
|
803 |
+
num_examples: 8208
|
804 |
+
- name: test
|
805 |
+
num_examples: 1127
|
806 |
+
- config_name: all+occ
|
807 |
+
features:
|
808 |
+
- name: id
|
809 |
+
dtype: int32
|
810 |
+
- name: year
|
811 |
+
dtype: int32
|
812 |
+
- name: text
|
813 |
+
dtype: string
|
814 |
+
- name: label
|
815 |
+
dtype: null
|
816 |
+
class_label: null
|
817 |
names:
|
818 |
+
"0": dismissal
|
819 |
+
"1": approval
|
820 |
+
- name: language
|
821 |
+
dtype: string
|
822 |
+
- name: region
|
823 |
+
dtype: string
|
824 |
+
- name: canton
|
825 |
+
dtype: string
|
826 |
+
- name: legal area
|
827 |
+
dtype: string
|
828 |
+
- name: explainability_label
|
829 |
+
dtype: string
|
830 |
+
- name: occluded_text
|
831 |
+
dtype: string
|
832 |
+
splits:
|
833 |
+
- name: train
|
834 |
+
num_examples: 59709
|
835 |
+
- name: validation
|
836 |
+
num_examples: 8208
|
837 |
+
- name: test
|
838 |
+
num_examples: 28375
|
|
|
|
|
|
|
|
|
839 |
|
840 |
+
---
|
841 |
# Dataset Card for "SwissJudgmentPrediction"
|
842 |
|
843 |
## Table of Contents
|
|
|
878 |
|
879 |
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
|
880 |
|
881 |
+
|
882 |
### Supported Tasks and Leaderboards
|
883 |
|
884 |
SwissJudgmentPrediction can be used for the legal judgment prediction task.
|
885 |
|
886 |
+
OcclusionSwissJudgmentPrediction can be used for performing the occlusion in the legal judgment prediction task.
|
887 |
+
|
888 |
+
LowerCourtInsertionSwissJudgmentPrediction can be used for performing the LowerCourtInsertion in the legal judgment prediction task.
|
889 |
+
|
890 |
+
The dataset is part of the [LEXTREME benchmark](https://huggingface.co/datasets/joelito/lextreme)
|
891 |
|
892 |
### Languages
|
893 |
|
|
|
895 |
|
896 |
## Dataset Structure
|
897 |
|
898 |
+
In version 2 we added machine translated data using [EasyNMT](https://github.com/UKPLab/EasyNMT) for all documents into German, French, Italian and English as an additional training set. With Occlusion-Swiss-Judgment-Prediction we extended part of the test set by adding sentence splitting with explainability labels. The Lower-Court-Insertion-Swiss-Judgment-Prediction extends part of the test set with lower court insertion. Note that both the test set for the Lower Court Insertion and Occlusion should be used in combination with the
|
899 |
+
Swiss-Judgment-Prediction training and validation sets.
|
900 |
|
901 |
### Data Instances
|
902 |
|
|
|
957 |
`language`: (**str**) one of (de, fr, it) \
|
958 |
`region`: (**str**) the region of the lower court \
|
959 |
`canton`: (**str**) the canton of the lower court \
|
960 |
+
`legal area`: (**str**) the legal area of the case
|
961 |
|
962 |
|
963 |
|
964 |
+
**Monolingual use of the dataset SwissJudgmentPrediction**
|
965 |
|
966 |
The following data fields are provided for documents (`train`, `validation`, `test`):
|
967 |
|
|
|
972 |
`language`: (**str**) one of (de, fr, it) \
|
973 |
`region`: (**str**) the region of the lower court \
|
974 |
`canton`: (**str**) the canton of the lower court \
|
975 |
+
`legal area`: (**str**) the legal area of the case
|
976 |
+
|
977 |
+
**Monolingual use of the dataset OcclusionSwissJudgmentPrediction**
|
978 |
+
|
979 |
+
|
980 |
+
The following data fields are provided for documents (occ_test):
|
981 |
+
|
982 |
+
id: (**int**) a unique identifier of the for the document
|
983 |
+
year: (**int**) the publication year
|
984 |
+
label: (**str**) the judgment outcome: dismissal or approval
|
985 |
+
language: (**str**) one of (de, fr, it)
|
986 |
+
region: (**str**) the region of the lower court
|
987 |
+
canton: (**str**) the canton of the lower court
|
988 |
+
legal area: (**str**) the legal area of the case
|
989 |
+
explainability_label (**str**): the explainability label assigned to the occluded text: Supports judgment, Opposes judgment, Neutral, Baseline
|
990 |
+
occluded_text (**str**): the occluded text
|
991 |
+
text: (**str**) the facts of the case w/o the occluded text except for cases w/ explainability label "Baseline" (contain entire facts)
|
992 |
+
|
993 |
+
Note that Baseline cases are only contained in version 1 of the occlusion test set, since they do not change from experiment to experiment.
|
994 |
+
|
995 |
+
**Monolingual use of the dataset LowerCourtInsertionSwissJudgmentPrediction**
|
996 |
+
|
997 |
+
The following data fields are provided for documents (lci_test):
|
998 |
+
|
999 |
+
id: (**int**) a unique identifier of the for the document
|
1000 |
+
year: (**int**) the publication year
|
1001 |
+
label: (**str**) the judgment outcome: dismissal or approval
|
1002 |
+
language: (**str**) one of (de, fr, it)
|
1003 |
+
region: (**str**) the region of the lower court
|
1004 |
+
canton: (**str**) the canton of the lower court
|
1005 |
+
legal area: (**str**) the legal area of the case
|
1006 |
+
explainability_label: (**str**) the explainability label assigned to the occluded text: Lower court, Baseline
|
1007 |
+
text: (**str**) the facts of the case w/o the occluded text except for cases w/ explainability label "Baseline" (contain entire facts)
|
1008 |
+
lower_court: (**str**) the inserted lower_court (for Baseline there is no insertion)
|
1009 |
|
1010 |
|
1011 |
### Data Splits
|
1012 |
|
1013 |
+
| Language | Subset | Number of Documents (Training/Validation/Test) |
|
1014 |
|------------|------------|------------------------------------------------|
|
1015 |
| German | **de** | 35'452 / 4'705 / 9'725 |
|
1016 |
| French | **fr** | 21'179 / 3'095 / 6'820 |
|
|
|
1020 |
| MT French | **mt_fr** | 38'524 / 0 / 0 |
|
1021 |
| MT Italian | **mt_it** | 56'631 / 0 / 0 |
|
1022 |
| MT All | **all+mt** | 238'818 / 8'208 / 17'357 |
|
1023 |
+
LCI German| **lci_de** | 35'452 / 4'705 / 378 |
|
1024 |
+
LCI French | **lci_fr** | 21'179 / 3'095 / 414 |
|
1025 |
+
LCI Italian | **lci_it** | 3'072 / 408 / 335 |
|
1026 |
+
LCI All | lci+all | 59'709 / 8'208 / 1127 |
|
1027 |
+
OCC German| **occ_de_1** | 35'452 / 4'705 / 427 |
|
1028 |
+
OCC German| **occ_de_2** | 35'452 / 4'705 / 1366 |
|
1029 |
+
OCC German| **occ_de_3**| 35'452 / 4'705 / 3567 |
|
1030 |
+
OCC German| **occ_4** | 35'452 / 4'705 / 7235 |
|
1031 |
+
OCC French | **occ_1** | 21'179 / 3'095 / 307 |
|
1032 |
+
OCC French | **occ_2** | 21'179 / 3'095 / 854 |
|
1033 |
+
OCC French | **occ_3** | 21'179 / 3'095 / 1926 |
|
1034 |
+
OCC French | **occ_4** | 21'179 / 3'095 / 3279 |
|
1035 |
+
OCC Italian | **occ_1** | 3'072 / 408 / 299 |
|
1036 |
+
OCC Italian | **occ_2** | 3'072 / 408 / 919 |
|
1037 |
+
OCC Italian | **occ_3** | 3'072 / 408 / 2493 |
|
1038 |
+
OCC Italian | **occ_4** | 3'072 / 408 / 5733 |
|
1039 |
+
OCC All | **occ+all** | 59'709 / 8'208 / 28375 |
|
1040 |
+
|
1041 |
|
1042 |
## Dataset Creation
|
1043 |
|
1044 |
### Curation Rationale
|
1045 |
|
1046 |
+
The dataset was curated by Niklaus et al. (2021) and Nina Baumgartner.
|
1047 |
|
1048 |
### Source Data
|
1049 |
|
1050 |
#### Initial Data Collection and Normalization
|
1051 |
|
1052 |
+
The original data are available at the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
|
1053 |
|
1054 |
#### Who are the source language producers?
|
1055 |
|
|
|
1059 |
|
1060 |
#### Annotation process
|
1061 |
|
1062 |
+
The decisions have been annotated with the binarized judgment outcome using parsers and regular expressions. In addition a subset of the test set (27 cases in German, 24 in French and 23 in Italian spanning over the years 2017 an 20200) was annotated by legal experts, splitting sentences/group of sentences and annotated with one of the following explainability label: Supports judgment, Opposes Judgment, Neutral and Lower Court. For the occlusion the test sets have each sentence/group of sentence once occluded, enabling an analysis of the changes in the model's performance. The lower court annotations were used the insert each lower court into each case once (instead of the original lower court). Allowing an analysis of the changes in the models performance for each inserted lower court, giving insight into a possible bias among them. The legal expert annotation were conducted from April 2020 to August 2020.
|
1063 |
|
1064 |
#### Who are the annotators?
|
1065 |
|
1066 |
Joel Niklaus and Adrian Jörg annotated the binarized judgment outcomes.
|
1067 |
Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
|
1068 |
+
The group of legal experts consists of Thomas Lüthi (lawyer), Lynn Grau (law student at master's level) and Angela Stefanelli (law student at master's level).
|
1069 |
|
1070 |
### Personal and Sensitive Information
|
1071 |
|
|
|
1131 |
}
|
1132 |
```
|
1133 |
|
1134 |
+
```
|
1135 |
+
@misc{baumgartner_nina_occlusion_2019,
|
1136 |
+
title = {From Occlusion to Transparancy – An Occlusion-Based Explainability Approach for Legal Judgment Prediction in Switzerland},
|
1137 |
+
shorttitle = {From Occlusion to Transparancy},
|
1138 |
+
abstract = {Natural Language Processing ({NLP}) models have been used for more and more complex tasks such as Legal Judgment Prediction ({LJP}). A {LJP} model predicts the outcome of a legal case by utilizing its facts. This increasing deployment of Artificial Intelligence ({AI}) in high-stakes domains such as law and the involvement of sensitive data has increased the need for understanding such systems. We propose a multilingual occlusion-based explainability approach for {LJP} in Switzerland and conduct a study on the bias using Lower Court Insertion ({LCI}). We evaluate our results using different explainability metrics introduced in this thesis and by comparing them to high-quality Legal Expert Annotations using Inter Annotator Agreement. Our findings show that the model has a varying understanding of the semantic meaning and context of the facts section, and struggles to distinguish between legally relevant and irrelevant sentences. We also found that the insertion of a different lower court can have an effect on the prediction, but observed no distinct effects based on legal areas, cantons, or regions. However, we did identify a language disparity with Italian performing worse than the other languages due to representation inequality in the training data, which could lead to potential biases in the prediction in multilingual regions of Switzerland. Our results highlight the challenges and limitations of using {NLP} in the judicial field and the importance of addressing concerns about fairness, transparency, and potential bias in the development and use of {NLP} systems. The use of explainable artificial intelligence ({XAI}) techniques, such as occlusion and {LCI}, can help provide insight into the decision-making processes of {NLP} systems and identify areas for improvement. Finally, we identify areas for future research and development in this field in order to address the remaining limitations and challenges.},
|
1139 |
+
author = {{Baumgartner, Nina}},
|
1140 |
+
year = {2022},
|
1141 |
+
langid = {english}
|
1142 |
+
}
|
1143 |
+
```
|
1144 |
+
|
1145 |
### Contributions
|
1146 |
|
1147 |
+
Thanks to [@joelniklaus](https://github.com/joelniklaus) and [@ninabaumgartner](https://github.com/ninabaumgartner) for adding this dataset.
|
test.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd1b4b9cc9c212297079f2ee93b5d42162ede5500057f4dc160920076bfbb974
|
3 |
+
size 9202996
|
test_lci.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c10b149538b79221bf3dc50f0e2d0360975c49d68ad4fc080a459353adc52b1a
|
3 |
+
size 64440
|
test_occ_1.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edddcbef268ee92257794b1725c88033d3c6b1dcbea309e773b3d2086e8b2a6d
|
3 |
+
size 23964
|
test_occ_2.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2257091ae41de0301beb4a34329c0e78afd0a81fd523a51b0b98f7b6094dbcd1
|
3 |
+
size 110416
|
test_occ_3.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dbaf759c202f16d1c6746d01a22fafebef37ca1724acb5ed23dd3e1b499bd6e
|
3 |
+
size 196132
|
test_occ_4.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffbcb52357c6e418dbc9c977af20174f3f9eb90435e5c4bee0c5c03c191427b5
|
3 |
+
size 336580
|
train.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f88f236f1fbc6c2362f59a3dd24361073142a4667915043647c69cd397e553cc
|
3 |
+
size 29606316
|
train_mt.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57de3f80bf30ff908fa8ada76daef75edd5cb3317df71d64de278a4f021038a8
|
3 |
+
size 87355744
|
val.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0a339d1890c18251b90e87aebef9054ba48348dd9602673599fa2e76798d264
|
3 |
+
size 4149924
|