Datasets:

ArXiv:
Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for Linnaeus 5

Dataset Details

Dataset Description

Linnaeus 5 dataset contains RGB images (256x256) for classification across 5 categories: berry, bird, dog, flower, and other (negative set). It includes 1200 training images and 400 test images per class.

Dataset Sources

  • Homepage: https://chaladze.com/l5/
  • Paper: Chaladze, G., & Kalatozishvili, L. (2017). Linnaeus 5 dataset for machine learning. arXiv preprint arXiv:1707.06677.

Dataset Structure

Total images: 8,000

Classes: 5 categories

Splits:

  • Train: 6,000 images

  • Test: 2,000 images

Image specs: JPEG format, 256×256 pixels, RGB

Example Usage

Below is a quick example of how to load this dataset via the Hugging Face Datasets library.

from datasets import load_dataset  

# Load the dataset  
dataset = load_dataset("randall-lab/linnaeus5", split="train", trust_remote_code=True)   
# dataset = load_dataset("randall-lab/linnaeus5", split="test", trust_remote_code=True)  

# Access a sample from the dataset  
example = dataset[0]  
image = example["image"]  
label = example["label"]  

image.show()  # Display the image  
print(f"Label: {label}")

Citation

BibTeX:

@article{chaladze2017linnaeus, title={Linnaeus 5 dataset for machine learning}, author={Chaladze, G and Kalatozishvili, L}, journal={arXiv preprint arXiv:1707.06677}, year={2017} }

Downloads last month
8