Datasets:

ArXiv:
Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for KMNIST

Dataset Details

Dataset Description

This dataset contains two variants, Kuzushiji-MNIST and Kuzushiji-49.

Kuzushiji-MNIST is a drop-in replacement for the MNIST dataset.

Kuzushiji-49, as the name suggests, has 49 classes, is a much larger, but imbalanced dataset containing 48 Hiragana characters and one Hiragana iteration mark.

  • License: CC BY-SA 4.0

Dataset Sources

  • Homepage: https://github.com/rois-codh/kmnist
  • Paper: Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., & Ha, D. (2018). Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718.

Dataset Structure

Kuzushiji-MNIST:

Total images: 70,000

Classes: 10 categories

Splits:

  • Train: 60,000 images

  • Test: 10,000 images

Image specs: 28×28 pixels, grayscale

Kuzushiji-49:

Total images: 270,912

Classes: 49 categories

Splits:

  • Train: 232,365 images

  • Test: 38,547 images

Image specs: 28×28 pixels, grayscale

Example Usage

Below is a quick example of how to load this dataset via the Hugging Face Datasets library.

from datasets import load_dataset  

# Load the dataset  
dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="train", trust_remote_code=True)   
# dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="test", trust_remote_code=True)
# dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="train", trust_remote_code=True)   
# dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="test", trust_remote_code=True)  

# Access a sample from the dataset  
example = dataset[0]  
image = example["image"]  
label = example["label"]  

image.show()  # Display the image  
print(f"Label: {label}")

Citation

BibTeX:

@article{clanuwat2018deep, title={Deep learning for classical japanese literature}, author={Clanuwat, Tarin and Bober-Irizar, Mikel and Kitamoto, Asanobu and Lamb, Alex and Yamamoto, Kazuaki and Ha, David}, journal={arXiv preprint arXiv:1812.01718}, year={2018} }

Downloads last month
10