You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

360+x Dataset


360+x dataset introduces a unique panoptic perspective to scene understanding, differentiating itself from traditional datasets by offering multiple viewpoints and modalities, captured from a variety of scenes

Key Features:

  • Multi-viewpoint Captures: Includes 360° panoramic video, third-person front view video, egocentric monocular video, and egocentric binocular video.
  • Rich Audio Modalities: Features normal audio and directional binaural delay.
  • 2,152 multi-model videos captured by 360 cameras and Spectacles camera (8579k frames in total) Captured in 17 cities across 5 countries, covering 28 scenes ranging from Artistic Spaces to Natural Landscapes.
  • Action Temporal Segmentation: Provides labels for 38 action instances for each video pair.

Download This Repo

You can use following code to download the entire dataset:

from huggingface_hub import snapshot_download

repo_id = "quchenyuan/360x_dataset"

snapshot_download(repo_id=repo_id, repo_type="dataset", token={your_token})

Dataset Details

Project Description

  • Developed by: Hao Chen, Yuqi Hou, Chenyuan Qu, Irene Testini, Xiaohan Hong, Jianbo Jiao
  • Funded by: the Ramsay Research Fund, and the Royal Society Short Industry Fellowship
  • License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0


Dataset Statistics

  • Total Videos: 2,152, split between 464 videos captured using 360 cameras and 1,688 with Spectacles cameras.
  • Scenes: 15 indoor and 13 outdoor, totaling 28 scene categories.
  • Short Clips: The videos have been segmented into 1,380 shorter clips, each approximately 10 seconds long, totaling around 67.78 hours.
  • Frames: 8,579k frames across all clips.

Dataset Structure

Our dataset offers a comprehensive collection of panoramic videos, binocular videos, and third-person videos, each pair of videos accompanied by annotations. Additionally, it includes features extracted using I3D, VGGish, and ResNet-18. Given the high-resolution nature of our dataset (5760x2880 for panoramic and binocular videos, 1920x1080 for third-person front view videos), the overall size is considerably large. To accommodate diverse research needs and computational resources, we also provide a lower-resolution version of the dataset (640x320 for panoramic and binocular videos, 569x320 for third-person front view videos) available for download.

In this repo, we provide the lower-resolution version of the dataset. To access the high-resolution version, please visit the official website.


  title={360+x: A Panoptic Multi-modal Scene Understanding Dataset},
  author={Chen, Hao and Hou, Yuqi and Qu, Chenyuan and Testini, Irene and Hong, Xiaohan and Jiao, Jianbo},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
Downloads last month
Edit dataset card