File size: 13,528 Bytes
561d013
 
 
 
b37b665
561d013
bfc9042
561d013
c2b8249
561d013
 
 
2c7d36b
 
 
 
 
 
 
 
 
 
bfc9042
 
 
561d013
 
 
2c7d36b
561d013
 
2c7d36b
 
 
 
 
561d013
 
 
 
 
 
 
 
9d5add7
561d013
 
 
 
 
 
 
 
 
 
 
 
 
bfc9042
 
9e62130
 
 
293f7c7
9e62130
 
bfc9042
9e62130
293f7c7
bfc9042
7347da9
561d013
 
 
 
 
 
 
 
 
c1bd9c3
 
b37b665
6278e8d
561d013
 
 
 
b37b665
561d013
c1bd9c3
 
561d013
b37b665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561d013
 
858526b
995abd8
 
 
ce98912
995abd8
858526b
995abd8
d64bfc9
995abd8
858526b
995abd8
d64bfc9
995abd8
 
561d013
 
 
 
 
ea59543
561d013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c7d36b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
---
annotations_creators:
- crowdsourced
license: other
pretty_name: DocLayNet small
size_categories:
- 1K<n<10K
tags:
- DocLayNet
- COCO
- PDF
- IBM
- Financial-Reports
- Finance
- Manuals
- Scientific-Articles
- Science
- Laws
- Law
- Regulations
- Patents
- Government-Tenders
- object-detection
- image-segmentation
- token-classification
task_categories:
- object-detection
- image-segmentation
- token-classification
task_ids:
- instance-segmentation
language:
- en
- de
- fr
- ja
---

# Dataset Card for DocLayNet small

## About this card (01/27/2023)

### Property and license

All information from this page but the content of this paragraph "About this card (01/27/2023)" has been copied/pasted from [Dataset Card for DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet).

DocLayNet is a dataset created by Deep Search (IBM Research) published under [license CDLA-Permissive-1.0](https://huggingface.co/datasets/ds4sd/DocLayNet#licensing-information). 

I do not claim any rights to the data taken from this dataset and published on this page.

### DocLayNet dataset

[DocLayNet dataset](https://github.com/DS4SD/DocLayNet) (IBM) provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. 

Until today, the dataset can be downloaded through direct links or as a dataset from Hugging Face datasets:
- direct links: [doclaynet_core.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip) (28 GiB), [doclaynet_extra.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_extra.zip) (7.5 GiB)
- Hugging Face dataset library: [dataset DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet)

Paper: [DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis](https://arxiv.org/abs/2206.01062) (06/02/2022)

### About PDFs languages

Citation of the page 3 of the [DocLayNet paper](https://arxiv.org/abs/2206.01062): 
"We did not control the document selection with regard to language. **The vast majority of documents contained in DocLayNet (close to 95%) are published in English language.** However, **DocLayNet also contains a number of documents in other languages such as German (2.5%), French (1.0%) and Japanese (1.0%)**. While the document language has negligible impact on the performance of computer vision methods such as object detection and segmentation models, it might prove challenging for layout analysis methods which exploit textual features."

### About PDFs categories distribution

Citation of the page 3 of the [DocLayNet paper](https://arxiv.org/abs/2206.01062): 
"The pages in DocLayNet can be grouped into **six distinct categories**, namely **Financial Reports, Manuals, Scientific Articles, Laws & Regulations, Patents and Government Tenders**. Each document category was sourced from various repositories. For example, Financial Reports contain both free-style format annual reports which expose company-specific, artistic layouts as well as the more formal SEC filings. The two largest categories (Financial Reports and Manuals) contain a large amount of free-style layouts in order to obtain maximum variability. In the other four categories, we boosted the variability by mixing documents from independent providers, such as different government websites or publishers. In Figure 2, we show the document categories contained in DocLayNet with their respective sizes."

### Processing into a format facilitating its use by HF notebooks

These 2 options require the downloading of all the data (approximately 30GBi), which requires downloading time (about 45 mn in Google Colab) and a large space on the hard disk. These could limit experimentation for people with low resources.

Moreover, even when using the download via HF datasets library, it is necessary to download the EXTRA zip separately ([doclaynet_extra.zip](https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_extra.zip), 7.5 GiB) to associate the annotated bounding boxes with the text extracted by OCR from the PDFs. This operation also requires additional code because the boundings boxes of the texts do not necessarily correspond to those annotated (a calculation of the percentage of area in common between the boundings boxes annotated and those of the texts makes it possible to make a comparison between them).

At last, in order to use Hugging Face notebooks on fine-tuning layout models like LayoutLMv3 or LiLT, DocLayNet data must be processed in a proper format.

For all these reasons, I decided to process the DocLayNet dataset:
- into 3 datasets of different sizes:
  - [DocLayNet small](https://huggingface.co/datasets/pierreguillou/DocLayNet-small) (about 1% of DocLayNet) < 1.000k document images (691 train, 64 val, 49 test)
  - [DocLayNet base](https://huggingface.co/datasets/pierreguillou/DocLayNet-base) (about 10% of DocLayNet) < 10.000k document images (6910 train, 648 val, 499 test)
  - DocLayNet large with full dataset (to be done)
- with associated texts,
- and in a format facilitating their use by HF notebooks.

*Note: the layout HF notebooks will greatly help participants of the IBM [ICDAR 2023 Competition on Robust Layout Segmentation in Corporate Documents](https://ds4sd.github.io/icdar23-doclaynet/)!*

### Download & overview

The size of the DocLayNet small is about 1% of the DocLayNet dataset (random selection respectively in the train, val and test files).

```
# !pip install -q datasets

from datasets import load_dataset

dataset_small = load_dataset("pierreguillou/DocLayNet-small")

# overview of dataset_small

DatasetDict({
    train: Dataset({
        features: ['id', 'texts', 'bboxes_block', 'bboxes_line', 'categories', 'image', 'pdf', 'page_hash', 'original_filename', 'page_no', 'num_pages', 'original_width', 'original_height', 'coco_width', 'coco_height', 'collection', 'doc_category'],
        num_rows: 691
    })
    validation: Dataset({
        features: ['id', 'texts', 'bboxes_block', 'bboxes_line', 'categories', 'image', 'pdf', 'page_hash', 'original_filename', 'page_no', 'num_pages', 'original_width', 'original_height', 'coco_width', 'coco_height', 'collection', 'doc_category'],
        num_rows: 64
    })
    test: Dataset({
        features: ['id', 'texts', 'bboxes_block', 'bboxes_line', 'categories', 'image', 'pdf', 'page_hash', 'original_filename', 'page_no', 'num_pages', 'original_width', 'original_height', 'coco_width', 'coco_height', 'collection', 'doc_category'],
        num_rows: 49
    })
})
```

### Annotated bounding boxes

The DocLayNet base makes easy to display document image with the annotaed bounding boxes of paragraphes or lines.

Check the notebook [processing_DocLayNet_dataset_to_be_used_by_layout_models_of_HF_hub.ipynb](https://github.com/piegu/language-models/blob/master/processing_DocLayNet_dataset_to_be_used_by_layout_models_of_HF_hub.ipynb) in order to get the code.

#### Paragraphes

![Annotated DocLayNet document image with bounding boxes and categories of paragraphes](https://huggingface.co/datasets/pierreguillou/DocLayNet-small/resolve/main/DocLayNet_image_annotated_bounding_boxes_paragraph.png)

#### Lines

![Annotated DocLayNet document image with bounding boxes and categories of lines](https://huggingface.co/datasets/pierreguillou/DocLayNet-small/resolve/main/DocLayNet_image_annotated_bounding_boxes_line.png)


### HF notebooks

- [notebooks LayoutLM](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLM) (Niels Rogge)
- [notebooks LayoutLMv2](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv2) (Niels Rogge)
- [notebooks LayoutLMv3](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3) (Niels Rogge)
- [notebooks LiLT](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LiLT) (Niels Rogge)
- [Document AI: Fine-tuning LiLT for document-understanding using Hugging Face Transformers](https://github.com/philschmid/document-ai-transformers/blob/main/training/lilt_funsd.ipynb) ([post](https://www.philschmid.de/fine-tuning-lilt#3-fine-tune-and-evaluate-lilt) of Phil Schmid)
  
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Dataset Structure](#dataset-structure)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Annotations](#annotations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
- **Repository:** https://github.com/DS4SD/DocLayNet
- **Paper:** https://doi.org/10.1145/3534678.3539043
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:

1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.

### Supported Tasks and Leaderboards

We are hosting a competition in ICDAR 2023 based on the DocLayNet dataset. For more information see https://ds4sd.github.io/icdar23-doclaynet/.

## Dataset Structure

### Data Fields

DocLayNet provides four types of data assets:

1. PNG images of all pages, resized to square `1025 x 1025px`
2. Bounding-box annotations in COCO format for each PNG image
3. Extra: Single-page PDF files matching each PNG image
4. Extra: JSON file matching each PDF page, which provides the digital text cells with coordinates and content

The COCO image record are defined like this example

```js
    ...
    {
      "id": 1,
      "width": 1025,
      "height": 1025,
      "file_name": "132a855ee8b23533d8ae69af0049c038171a06ddfcac892c3c6d7e6b4091c642.png",

      // Custom fields:
      "doc_category": "financial_reports" // high-level document category
      "collection": "ann_reports_00_04_fancy", // sub-collection name
      "doc_name": "NASDAQ_FFIN_2002.pdf", // original document filename
      "page_no": 9, // page number in original document
      "precedence": 0, // Annotation order, non-zero in case of redundant double- or triple-annotation
    },
    ...
```

The `doc_category` field uses one of the following constants:

```
financial_reports,
scientific_articles,
laws_and_regulations,
government_tenders,
manuals,
patents
```


### Data Splits

The dataset provides three splits
- `train`
- `val`
- `test`

## Dataset Creation

### Annotations

#### Annotation process

The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).


#### Who are the annotators?

Annotations are crowdsourced.


## Additional Information

### Dataset Curators

The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
You can contact us at [deepsearch-core@zurich.ibm.com](mailto:deepsearch-core@zurich.ibm.com).

Curators:
- Christoph Auer, [@cau-git](https://github.com/cau-git)
- Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)

### Licensing Information

License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)


### Citation Information


```bib
@article{doclaynet2022,
  title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
  doi = {10.1145/3534678.353904},
  url = {https://doi.org/10.1145/3534678.3539043},
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
  year = {2022},
  isbn = {9781450393850},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  pages = {3743–3751},
  numpages = {9},
  location = {Washington DC, USA},
  series = {KDD '22}
}
```

### Contributions

Thanks to [@dolfim-ibm](https://github.com/dolfim-ibm), [@cau-git](https://github.com/cau-git) for adding this dataset.