text
stringclasses
3 values
(*************************************************************************) (* Copyright (C) 2013 - 2015 *) (* Author C. Cohen *) (* DRAFT - PLEASE USE WITH CAUTION *) (* License CeCILL-B *) (*************************************************************************) From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq. From mathcomp Require Import choice path finset finfun fintype bigop. Require Import finmap. (*****************************************************************************) (* This file provides a representation of multisets based on fsfun *) (* {mset T} == the type of multisets on a choiceType T *) (* The following notations are in the %mset scope *) (* mset0 == the empty multiset *) (* mset n a == the multiset with n times element a *) (* [mset a] == the singleton multiset {k} := mset 1 a *) (* [mset a1; ..; an] == the multiset obtained from the elements a1,..,an *) (* A `&` B == the intersection of A and B (the min of each) *) (* A `|` B == the union of A and B (the max of each) *) (* A `+` B == the sum of A and B *) (* a |` B == the union of singleton a and B *) (* a +` B == the addition of singleton a to B *) (* A `\` B == the difference A minus B *) (* A `\ b == A without one b *) (* A `*` B == the product of A and B *) (* [disjoint A & B] := A `&` B == 0 *) (* A `<=` B == A is a sub-multiset of B *) (* A `<` B == A is a proper sub-multiset of B *) (*****************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Lemma sumn_map I (f : I -> nat) s : sumn [seq f i | i <- s] = \sum_(i <- s) f i. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) Proof. by elim: s => [|i s IHs] in f *; rewrite ?(big_nil, big_cons) //= IHs. Qed. Lemma sumn_filter s P : sumn [seq i <- s | P i] = \sum_(i <- s | P i) i. Proof. by rewrite -big_filter -sumn_map map_id. Qed. Lemma sumn_map_filter I s (f : I -> nat) P : sumn [seq f i | i <- s & P i] = \sum_(i <- s | P i) f i. Proof. by rewrite sumn_map big_filter. Qed. Delimit Scope mset_scope with mset. Local Open Scope fset_scope. Local Open Scope fmap_scope. Local Open Scope mset_scope. Local Open Scope nat_scope. Definition multiset (T : choiceType) := {fsfun T -> nat with 0}. Definition multiset_of (T : choiceType) of phant T := @multiset T. Notation "'{mset' T }" := (@multiset_of _ (Phant T)) (format "'{mset' T }") : mset_scope. Notation "[ 'mset[' key ] x 'in' aT => F ]" := ([fsfun[key] x in aT => F] : {mset _}) (at level 0, x ident, only parsing) : mset_scope. Notation "[ 'mset' x 'in' aT => F ]" := ([fsfun x in aT => F] : {mset _}) (at level 0, x ident, only parsing) : mset_scope. Notation "[ 'm' 'set' x 'in' aT => F ]" := ([fsfun[_] x in aT => F] : {mset _}) (at level 0, x ident, format "[ 'm' 'set' x 'in' aT => F ]") : mset_scope. Identity Coercion multiset_multiset_of : multiset_of >-> multiset. Notation enum_mset_def A := (flatten [seq nseq (A%mset x) x | x <- finsupp A%mset]). Module Type EnumMsetSig. Axiom f : forall K, multiset K -> seq K. Axiom E : f = (fun K (A : multiset K) => enum_mset_def A). End EnumMsetSig. Module EnumMset : EnumMsetSig. Definition f K (A : multiset K) := enum_mset_def A. Definition E := (erefl f). End EnumMset. Notation enum_mset := EnumMset.f. Coercion enum_mset : multiset >-> seq. Canonical enum_mset_unlock := Unlockable EnumMset.E. Canonical multiset_predType (K : choiceType) := Eval hnf in mkPredType (fun (A : multiset K) a => a \in enum_mset A). Canonical mset_finpredType (T: choiceType) := mkFinPredType (multiset T) (fun A => undup (enum_mset A)) (fun _ => undup_uniq _) (fun _ _ => mem_undup _ _). Section MultisetOps. Context {K : choiceType}. Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K). Definition mset0 : {mset K} := [fsfun]. Fact msetn_key : unit. Proof. exact: tt. Qed. Definition msetn n a := [mset[msetn_key] x in [fset a] => n]. Fact seq_mset_key : unit. Proof. exact: tt. Qed. Definition seq_mset (s : seq K) := [mset[seq_mset_key] x in [fset x in s] => count (pred1 x) s]. Fact msetU_key : unit. Proof. exact: tt. Qed. Definition msetU A B := [mset[msetU_key] x in finsupp A `|` finsupp B => maxn (A x) (B x)]. Fact msetI_key : unit. Proof. exact: tt. Qed. Definition msetI A B := [mset[msetI_key] x in finsupp A `|` finsupp B => minn (A x) (B x)]. Fact msetD_key : unit. Proof. exact: tt. Qed. Definition msetD A B := [mset[msetD_key] x in finsupp A `|` finsupp B => A x + B x]. Fact msetB_key : unit. Proof. exact: tt. Qed. Definition msetB A B := [mset[msetB_key] x in finsupp A `|` finsupp B => A x - B x]. Fact msetM_key : unit. Proof. exact: tt. Qed. Definition msetM A B := [mset[msetM_key] x in finsupp A `*` finsupp B => A x.1 * B x.2]. Definition msubset A B := [forall x : finsupp A, A (val x) <= B (val x)]. Definition mproper A B := msubset A B && ~~ msubset B A. Definition mdisjoint A B := (msetI A B == mset0). End MultisetOps. Notation "[ 'mset' a ]" := (msetn 1 a) (at level 0, a at level 99, format "[ 'mset' a ]") : mset_scope. Notation "[ 'mset' a : T ]" := [mset (a : T)] (at level 0, a at level 99, format "[ 'mset' a : T ]") : mset_scope. Notation "A `|` B" := (msetU A B) : mset_scope. Notation "A `+` B" := (msetD A B) : mset_scope. Notation "A `\` B" := (msetB A B) : mset_scope. Notation "A `\ a" := (A `\` [mset a]) : mset_scope. Notation "a |` A" := ([mset (a)] `|` A) : mset_scope. Notation "a +` A" := ([mset (a)] `+` A) : mset_scope. Notation "A `*` B" := (msetM A B) : mset_scope. Notation "A `<=` B" := (msubset A B) (at level 70, no associativity) : mset_scope. Notation "A `<` B" := (mproper A B) (at level 70, no associativity) : mset_scope. (* This is left-associative due to historical limitations of the .. Notation. *) Notation "[ 'mset' a1 ; a2 ; .. ; an ]" := (msetD .. (a1 +` (msetn 1 a2)) .. (msetn 1 an)) (at level 0, a1 at level 99, format "[ 'mset' a1 ; a2 ; .. ; an ]") : mset_scope. Notation "A `&` B" := (msetI A B) : mset_scope. Section MSupp. Context {K : choiceType}. Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K). Lemma enum_msetE a A : (a \in A) = (a \in flatten [seq nseq (A x) x | x <- finsupp A]). Proof. by transitivity (a \in enum_mset A); rewrite // unlock. Qed. Lemma msuppE a A : (a \in finsupp A) = (a \in A). Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite enum_msetE. (* Goal: Bool.reflect (@eq (@multiset_of K (Phant (Choice.sort K))) (@seq_mset K s) (@seq_mset K s')) (@perm_eq (Choice.eqType K) s s') *) apply/idP/flattenP => [aA|/=[_ /mapP[x xA -> /nseqP[->//]]]]. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) exists (nseq (A a) a); first by apply/mapP; exists a. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/nseqP; split=> //; rewrite lt0n -mem_finsupp. Qed. End MSupp. Section MSetTheory. Context {K : choiceType}. Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K). Lemma msetP {A B} : A =1 B <-> A = B. Proof. exact: fsfunP. Qed. Lemma mset_neq0 a A : (A a != 0) = (a \in A). Proof. by rewrite -msuppE mem_finsupp. Qed. Lemma in_mset a A : (a \in A) = (A a > 0). Proof. by rewrite -mset_neq0 lt0n. Qed. Lemma mset_eq0 a A : (A a == 0) = (a \notin A). Proof. by rewrite -mset_neq0 negbK. Qed. Lemma mset_eq0P {a A} : reflect (A a = 0) (a \notin A). Proof. by rewrite -mset_eq0; apply: eqP. Qed. Lemma mset_gt0 a A : (A a > 0) = (a \in A). Proof. by rewrite -in_mset. Qed. Lemma mset_eqP {A B} : reflect (A =1 B) (A == B). Proof. exact: (equivP eqP (iff_sym msetP)). Qed. Lemma mset0E a : mset0 a = 0. Proof. by rewrite /mset0 fsfunE. Qed. Lemma msetnE n a b : (msetn n a) b = if b == a then n else 0. Proof. by rewrite fsfunE inE. Qed. Lemma msetnxx n a : (msetn n a) a = n. Proof. by rewrite msetnE eqxx. Qed. Lemma msetE2 A B a : ((A `+` B) a = A a + B a) * ((A `|` B) a = maxn (A a) (B a)) * ((A `&` B) a = minn (A a) (B a)) * ((A `\` B) a = (A a) - (B a)). Proof. (* Goal: @eq (Equality.sort nat_eqType) (@fun_of_fsfun (prod_choiceType K K) nat_eqType (fun _ : Choice.sort (prod_choiceType K K) => O) (@msetM K A B) u) (muln (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A (@fst (Choice.sort K) (Choice.sort K) u)) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) B (@snd (Choice.sort K) (Choice.sort K) u))) *) rewrite !fsfunE !inE !msuppE -!mset_neq0; case: ifPn => //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite negb_or !negbK => /andP [/eqP-> /eqP->]. Qed. Lemma count_mem_mset a A : count_mem a A = A a. Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite unlock count_flatten sumn_map big_map. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite (eq_bigr _ (fun _ _ => esym (sum1_count _ _))) /=. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite (eq_bigr _ (fun _ _ => big_nseq_cond _ _ _ _ _ _)) /= -big_mkcond /=. (* Goal: @eq nat (@BigOp.bigop nat (Choice.sort K) O (@enum_fset K (@FinSupp.fs K nat_eqType (fun _ : Choice.sort K => O) A)) (fun i : Choice.sort K => @BigBody nat (Choice.sort K) i addn (@eq_op (Choice.eqType K) i a) (@iter nat (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A i) (addn (S O)) O))) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A a) *) have [aNA|aA] := finsuppP. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite big1_fset // => i iA /eqP eq_ia; rewrite -eq_ia iA in aNA. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite big_fset_condE/= (big_fsetD1 a) ?inE ?eqxx ?andbT //= iter_addn mul1n. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite (_ : (_ `\ _)%fset = fset0) ?big_seq_fset0 ?addn0//. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/fsetP=> i; rewrite !inE; case: (i == a); rewrite ?(andbF, andbT). Qed. Lemma perm_undup_mset A : perm_eq (undup A) (finsupp A). Proof. (* Goal: is_true (@perm_eq (Choice.eqType K) (@undup (Choice.eqType K) (@EnumMset.f K A)) (@enum_fset K (@FinSupp.fs K nat_eqType (fun _ : Choice.sort K => O) A))) *) apply: uniq_perm_eq; rewrite ?undup_uniq // => a. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite mem_undup msuppE. Qed. Section big_com. Variables (R : Type) (idx : R) (op : Monoid.com_law idx). Implicit Types (X : {mset K}) (P : pred K) (F : K -> R). Lemma big_mset X P F : \big[op/idx]_(i <- X | P i) F i = \big[op/idx]_(i <- finsupp X | P i) iterop (X i) op (F i) idx. Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite [in RHS](eq_big_perm (undup X)) 1?perm_eq_sym ?perm_undup_mset//. (* Goal: @eq bool (@eq_op nat_eqType (@BigOp.bigop nat (Equality.sort I) O r (fun i : Equality.sort I => @BigBody nat (Equality.sort I) i addn (P i) (E i))) O) (@all (Equality.sort I) (@pred_of_simpl (Equality.sort I) (@SimplPred (Equality.sort I) (fun i : Equality.sort I => implb (P i) (@eq_op nat_eqType (E i) O)))) r) *) rewrite -[in LHS]big_undup_iterop_count; apply: eq_bigr => i _. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite count_mem_mset. Qed. End big_com. Lemma sum_mset (X : {mset K}) (P : pred K) (F : K -> nat) : \sum_(i <- X | P i) F i = \sum_(i <- finsupp X | P i) X i * F i. Proof. (* Goal: @eq bool (@eq_op nat_eqType (@BigOp.bigop nat (Equality.sort I) O r (fun i : Equality.sort I => @BigBody nat (Equality.sort I) i addn (P i) (E i))) O) (@all (Equality.sort I) (@pred_of_simpl (Equality.sort I) (@SimplPred (Equality.sort I) (fun i : Equality.sort I => implb (P i) (@eq_op nat_eqType (E i) O)))) r) *) rewrite big_mset; apply: eq_bigr => i _ //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite Monoid.iteropE iter_addn addn0 mulnC. Qed. Lemma prod_mset (X : {mset K}) (P : pred K) (F : K -> nat) : \prod_(i <- X | P i) F i = \prod_(i <- finsupp X | P i) F i ^ X i. Proof. by rewrite big_mset. Qed. Lemma mset_seqE s a : (seq_mset s) a = count_mem a s. Proof. by rewrite fsfunE inE/=; case: ifPn => // /count_memPn ->. Qed. Lemma perm_eq_seq_mset s : perm_eq (seq_mset s) s. Proof. by apply/allP => a _ /=; rewrite count_mem_mset mset_seqE. Qed. Lemma seq_mset_id A : seq_mset A = A. Proof. by apply/msetP=> a; rewrite mset_seqE count_mem_mset. Qed. Lemma eq_seq_msetP s s' : reflect (seq_mset s = seq_mset s') (perm_eq s s'). Proof. (* Goal: Bool.reflect (@eq (@multiset_of K (Phant (Choice.sort K))) (@seq_mset K s) (@seq_mset K s')) (@perm_eq (Choice.eqType K) s s') *) apply: (iffP idP) => [/perm_eqP perm_ss'|eq_ss']. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP => a; rewrite !mset_seqE perm_ss'. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/allP => a _ /=; rewrite -!mset_seqE eq_ss'. Qed. Lemma msetME A B (u : K * K) : (A `*` B) u = A u.1 * B u.2. Proof. (* Goal: @eq (Equality.sort nat_eqType) (@fun_of_fsfun (prod_choiceType K K) nat_eqType (fun _ : Choice.sort (prod_choiceType K K) => O) (@msetM K A B) u) (muln (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A (@fst (Choice.sort K) (Choice.sort K) u)) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) B (@snd (Choice.sort K) (Choice.sort K) u))) *) rewrite !fsfunE inE; case: ifPn => //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite negb_and !memNfinsupp => /orP [] /eqP->; rewrite ?muln0. Qed. Lemma mset1DE a A b : (a +` A) b = (b == a) + A b. Proof. by rewrite msetE2 msetnE; case: (b == a). Qed. Lemma mset1UE a A b : (a |` A) b = maxn (b == a) (A b). Proof. by rewrite msetE2 msetnE; case: (b == a). Qed. Lemma msetB1E a A b : (A `\ a) b = (A b) - (b == a). Proof. by rewrite msetE2 msetnE; case: (b == a). Qed. Let msetE := (mset0E, msetE2, msetnE, msetnxx, mset1DE, mset1UE, msetB1E, mset_seqE, msetME). Lemma in_mset0 a : a \in mset0 = false. Proof. by rewrite in_mset !msetE. Qed. Lemma in_msetn n a' a : a \in msetn n a' = (n > 0) && (a == a'). Proof. by rewrite in_mset msetE; case: (a == a'); rewrite ?andbT ?andbF. Qed. Lemma in_mset1 a' a : a \in [mset a'] = (a == a'). Proof. by rewrite in_msetn. Qed. Lemma in_msetD A B a : (a \in A `+` B) = (a \in A) || (a \in B). Proof. by rewrite !in_mset !msetE addn_gt0. Qed. Lemma in_msetU A B a : (a \in A `|` B) = (a \in A) || (a \in B). Proof. by rewrite !in_mset !msetE leq_max. Qed. Lemma in_msetDU A B a : (a \in A `+` B) = (a \in A `|` B). Proof. by rewrite in_msetU in_msetD. Qed. Lemma in_msetI A B a : (a \in A `&` B) = (a \in A) && (a \in B). Proof. by rewrite !in_mset msetE leq_min. Qed. Lemma in_msetB A B a : (a \in A `\` B) = (B a < A a). Proof. by rewrite -mset_neq0 msetE subn_eq0 ltnNge. Qed. Lemma in_mset1U a' A a : (a \in a' |` A) = (a == a') || (a \in A). Proof. by rewrite in_msetU in_mset msetE; case: (_ == _). Qed. Lemma in_mset1D a' A a : (a \in a' +` A) = (a == a') || (a \in A). Proof. by rewrite in_msetDU in_mset1U. Qed. Lemma in_msetB1 A b a : (a \in A `\ b) = ((a == b) ==> (A a > 1)) && (a \in A). Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite in_msetB msetE in_mset; case: (_ == _); rewrite -?geq_max. Qed. Lemma in_msetM A B (u : K * K) : (u \in A `*` B) = (u.1 \in A) && (u.2 \in B). Proof. by rewrite -!msuppE !mem_finsupp msetE muln_eq0 negb_or. Qed. Definition in_msetE := (in_mset0, in_msetn, in_msetB1, in_msetU, in_msetI, in_msetD, in_msetM). Let inE := (inE, in_msetE, (@msuppE K)). Lemma enum_mset0 : mset0 = [::] :> seq K. Proof. by rewrite unlock finsupp0. Qed. Lemma msetn0 (a : K) : msetn 0 a = mset0. Proof. by apply/msetP=> i; rewrite !msetE if_same. Qed. Lemma finsupp_msetn n a : finsupp (msetn n a) = if n > 0 then [fset a] else fset0. Proof. by apply/fsetP => i; rewrite !inE; case: ifP => //=; rewrite inE. Qed. Lemma enum_msetn n a : msetn n a = nseq n a :> seq K. Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) case: n => [|n]; first by rewrite msetn0 /= enum_mset0. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite unlock finsupp_msetn /= enum_fsetE /= enum_fset1 /= cats0. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite msetE eqxx. Qed. Section big. Variables (R : Type) (idx : R) (op : Monoid.law idx). Implicit Types (X : {mset K}) (P : pred K) (F : K -> R). Lemma big_mset0 P F : \big[op/idx]_(i <- mset0 | P i) F i = idx. Proof. by rewrite enum_mset0 big_nil. Qed. Lemma big_msetn n a P F : \big[op/idx]_(i <- msetn n a | P i) F i = if P a then iterop n op (F a) idx else idx. Proof. by rewrite enum_msetn big_nseq_cond Monoid.iteropE. Qed. End big. Lemma msetDC (A B : {mset K}) : A `+` B = B `+` A. Proof. by apply/msetP=> a; rewrite !msetE addnC. Qed. Lemma msetIC (A B : {mset K}) : A `&` B = B `&` A. Proof. by apply/msetP=> a; rewrite !msetE minnC. Qed. Lemma msetUC (A B : {mset K}) : A `|` B = B `|` A. Proof. by apply/msetP => a; rewrite !msetE maxnC. Qed. (* intersection *) Lemma mset0I A : mset0 `&` A = mset0. Proof. by apply/msetP => x; rewrite !msetE min0n. Qed. Lemma msetI0 A : A `&` mset0 = mset0. Proof. by rewrite msetIC mset0I. Qed. Lemma msetIA A B C : A `&` (B `&` C) = A `&` B `&` C. Proof. by apply/msetP=> x; rewrite !msetE minnA. Qed. Lemma msetICA A B C : A `&` (B `&` C) = B `&` (A `&` C). Proof. by rewrite !msetIA (msetIC A). Qed. Lemma msetIAC A B C : A `&` B `&` C = A `&` C `&` B. Proof. by rewrite -!msetIA (msetIC B). Qed. Lemma msetIACA A B C D : (A `&` B) `&` (C `&` D) = (A `&` C) `&` (B `&` D). Proof. by rewrite -!msetIA (msetICA B). Qed. Lemma msetIid A : A `&` A = A. Proof. by apply/msetP=> x; rewrite !msetE minnn. Qed. Lemma msetIIl A B C : A `&` B `&` C = (A `&` C) `&` (B `&` C). Proof. by rewrite msetIA !(msetIAC _ C) -(msetIA _ C) msetIid. Qed. Lemma msetIIr A B C : A `&` (B `&` C) = (A `&` B) `&` (A `&` C). Proof. by rewrite !(msetIC A) msetIIl. Qed. (* union *) Lemma mset0U A : mset0 `|` A = A. Proof. by apply/msetP => x; rewrite !msetE max0n. Qed. Lemma msetU0 A : A `|` mset0 = A. Proof. by rewrite msetUC mset0U. Qed. Lemma msetUA A B C : A `|` (B `|` C) = A `|` B `|` C. Proof. by apply/msetP=> x; rewrite !msetE maxnA. Qed. Lemma msetUCA A B C : A `|` (B `|` C) = B `|` (A `|` C). Proof. by rewrite !msetUA (msetUC B). Qed. Lemma msetUAC A B C : A `|` B `|` C = A `|` C `|` B. Proof. by rewrite -!msetUA (msetUC B). Qed. Lemma msetUACA A B C D : (A `|` B) `|` (C `|` D) = (A `|` C) `|` (B `|` D). Proof. by rewrite -!msetUA (msetUCA B). Qed. Lemma msetUid A : A `|` A = A. Proof. by apply/msetP=> x; rewrite !msetE maxnn. Qed. Lemma msetUUl A B C : A `|` B `|` C = (A `|` C) `|` (B `|` C). Proof. by rewrite msetUA !(msetUAC _ C) -(msetUA _ C) msetUid. Qed. Lemma msetUUr A B C : A `|` (B `|` C) = (A `|` B) `|` (A `|` C). Proof. by rewrite !(msetUC A) msetUUl. Qed. (* adjunction *) Lemma mset0D A : mset0 `+` A = A. Proof. by apply/msetP => x; rewrite !msetE add0n. Qed. Lemma msetD0 A : A `+` mset0 = A. Proof. by rewrite msetDC mset0D. Qed. Lemma msetDA A B C : A `+` (B `+` C) = A `+` B `+` C. Proof. by apply/msetP=> x; rewrite !msetE addnA. Qed. Lemma msetDCA A B C : A `+` (B `+` C) = B `+` (A `+` C). Proof. by rewrite !msetDA (msetDC B). Qed. Lemma msetDAC A B C : A `+` B `+` C = A `+` C `+` B. Proof. by rewrite -!msetDA (msetDC B). Qed. Lemma msetDACA A B C D : (A `+` B) `+` (C `+` D) = (A `+` C) `+` (B `+` D). Proof. by rewrite -!msetDA (msetDCA B). Qed. (* adjunction, union and difference with one element *) Lemma msetU1l x A B : x \in A -> x \in A `|` B. Proof. by move=> Ax /=; rewrite inE Ax. Qed. Lemma msetU1r A b : b \in A `|` [mset b]. Proof. by rewrite !inE eqxx orbT. Qed. Lemma msetB1P x A b : reflect ((x = b -> A x > 1) /\ x \in A) (x \in A `\ b). Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite !inE. apply: (iffP andP); first by move=> [/implyP Ax ->]; split => // /eqP. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> [Ax ->]; split => //; apply/implyP => /eqP. Qed. Lemma msetB11 b A : (b \in A `\ b) = (A b > 1). Proof. by rewrite inE eqxx /= in_mset -geq_max. Qed. Lemma msetB1K a A : a \in A -> a +` (A `\ a) = A. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> aA; apply/msetP=> x; rewrite !msetE subnKC //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have [->|//] := altP eqP; rewrite mset_gt0. Qed. Lemma msetD1K a B : (a +` B) `\ a = B. Proof. by apply/msetP => x; rewrite !msetE addKn. Qed. Lemma msetU1K a B : a \notin B -> (a |` B) `\ a = B. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> aB; apply/msetP=> x; rewrite !msetE. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) have [->|] := altP eqP; first by rewrite (mset_eq0P _). (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite max0n subn0. Qed. Lemma mset1U1 x B : x \in x |` B. Proof. by rewrite !inE eqxx. Qed. Lemma mset1D1 x B : x \in x +` B. Proof. by rewrite !inE eqxx. Qed. Lemma mset1Ur x a B : x \in B -> x \in a |` B. Proof. by move=> Bx; rewrite !inE predU1r. Qed. Lemma mset1Dr x a B : x \in B -> x \in a +` B. Proof. by move=> Bx; rewrite !inE predU1r. Qed. Lemma mset2P x a b : reflect (x = a \/ x = b) (x \in [mset a; b]). Proof. by rewrite !inE; apply: (iffP orP) => [] [] /eqP; intuition. Qed. Lemma in_mset2 x a b : (x \in [mset a; b]) = (x == a) || (x == b). Proof. by rewrite !inE. Qed. Lemma mset21 a b : a \in [mset a; b]. Proof. by rewrite mset1D1. Qed. Lemma mset22 a b : b \in [mset a; b]. Proof. by rewrite in_mset2 eqxx orbT. Qed. Lemma msetUP x A B : reflect (x \in A \/ x \in B) (x \in A `|` B). Proof. by rewrite !inE; exact: orP. Qed. Lemma msetDP x A B : reflect (x \in A \/ x \in B) (x \in A `+` B). Proof. by rewrite !inE; exact: orP. Qed. Lemma msetULVR x A B : x \in A `|` B -> (x \in A) + (x \in B). Proof. by rewrite inE; case: (x \in A); [left|right]. Qed. Lemma msetDLVR x A B : x \in A `+` B -> (x \in A) + (x \in B). Proof. by rewrite inE; case: (x \in A); [left|right]. Qed. (* distribute /cancel *) Lemma msetIUr A B C : A `&` (B `|` C) = (A `&` B) `|` (A `&` C). Proof. by apply/msetP=> x; rewrite !msetE minn_maxr. Qed. Lemma msetIUl A B C : (A `|` B) `&` C = (A `&` C) `|` (B `&` C). Proof. by apply/msetP=> x; rewrite !msetE minn_maxl. Qed. Lemma msetUIr A B C : A `|` (B `&` C) = (A `|` B) `&` (A `|` C). Proof. by apply/msetP=> x; rewrite !msetE maxn_minr. Qed. Lemma msetUIl A B C : (A `&` B) `|` C = (A `|` C) `&` (B `|` C). Proof. by apply/msetP=> x; rewrite !msetE maxn_minl. Qed. Lemma msetUKC A B : (A `|` B) `&` A = A. Proof. by apply/msetP=> x; rewrite !msetE maxnK. Qed. Lemma msetUK A B : (B `|` A) `&` A = A. Proof. by rewrite msetUC msetUKC. Qed. Lemma msetKUC A B : A `&` (B `|` A) = A. Proof. by rewrite msetIC msetUK. Qed. Lemma msetKU A B : A `&` (A `|` B) = A. Proof. by rewrite msetIC msetUKC. Qed. Lemma msetIKC A B : (A `&` B) `|` A = A. Proof. by apply/msetP=> x; rewrite !msetE minnK. Qed. Lemma msetIK A B : (B `&` A) `|` A = A. Proof. by rewrite msetIC msetIKC. Qed. Lemma msetKIC A B : A `|` (B `&` A) = A. Proof. by rewrite msetUC msetIK. Qed. Lemma msetKI A B : A `|` (A `&` B) = A. Proof. by rewrite msetIC msetKIC. Qed. Lemma msetUKid A B : B `|` A `|` A = B `|` A. Proof. by rewrite -msetUA msetUid. Qed. Lemma msetUKidC A B : A `|` B `|` A = A `|` B. Proof. by rewrite msetUAC msetUid. Qed. Lemma msetKUid A B : A `|` (A `|` B) = A `|` B. Proof. by rewrite msetUA msetUid. Qed. Lemma msetKUidC A B : A `|` (B `|` A) = B `|` A. Proof. by rewrite msetUCA msetUid. Qed. Lemma msetIKid A B : B `&` A `&` A = B `&` A. Proof. by rewrite -msetIA msetIid. Qed. Lemma msetIKidC A B : A `&` B `&` A = A `&` B. Proof. by rewrite msetIAC msetIid. Qed. Lemma msetKIid A B : A `&` (A `&` B) = A `&` B. Proof. by rewrite msetIA msetIid. Qed. Lemma msetKIidC A B : A `&` (B `&` A) = B `&` A. Proof. by rewrite msetICA msetIid. Qed. Lemma msetDIr A B C : A `+` (B `&` C) = (A `+` B) `&` (A `+` C). Proof. by apply/msetP=> x; rewrite !msetE addn_minr. Qed. Lemma msetDIl A B C : (A `&` B) `+` C = (A `+` C) `&` (B `+` C). Proof. by apply/msetP=> x; rewrite !msetE addn_minl. Qed. Lemma msetDKIC A B : (A `+` B) `&` A = A. Proof. by apply/msetP=> x; rewrite !msetE (minn_idPr _) // leq_addr. Qed. Lemma msetDKI A B : (B `+` A) `&` A = A. Proof. by rewrite msetDC msetDKIC. Qed. Lemma msetKDIC A B : A `&` (B `+` A) = A. Proof. by rewrite msetIC msetDKI. Qed. Lemma msetKDI A B : A `&` (A `+` B) = A. Proof. by rewrite msetDC msetKDIC. Qed. (* adjunction / subtraction *) Lemma msetDKB A : cancel (msetD A) (msetB^~ A). Proof. by move=> B; apply/msetP => a; rewrite !msetE addKn. Qed. Lemma msetDKBC A : cancel (msetD^~ A) (msetB^~ A). Proof. by move=> B; rewrite msetDC msetDKB. Qed. Lemma msetBSKl A B a : ((a +` A) `\` B) `\ a = A `\` B. Proof. (* Goal: @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K (@msetB K (@msetD K (@msetn K (S O) a) A) B) (@msetn K (S O) a)) (@msetB K A B) *) apply/msetP=> b; rewrite !msetE; case: ifPn; rewrite ?add0n ?subn0 //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite add1n subn1 subSKn. Qed. Lemma msetBDl C A B : (C `+` A) `\` (C `+` B) = A `\` B. Proof. by apply/msetP=> a; rewrite !msetE subnDl. Qed. Lemma msetBDr C A B : (A `+` C) `\` (B `+` C) = A `\` B. Proof. by apply/msetP=> a; rewrite !msetE subnDr. Qed. Lemma msetBDA A B C : B `\` (A `+` C) = B `\` A `\` C. Proof. by apply/msetP=> a; rewrite !msetE subnDA. Qed. Lemma msetUE A B C : msetU A B = A `+` (B `\` A). Proof. by apply/msetP=> a; rewrite !msetE maxnE. Qed. (* subset *) Lemma msubsetP {A B} : reflect (forall x, A x <= B x) (A `<=` B). Proof. (* Goal: Bool.reflect (forall x : Choice.sort K, is_true (leq (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A x) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) B x))) (@msubset K A B) *) apply: (iffP forallP)=> // ? x; case: (in_fsetP (finsupp A) x) => //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite msuppE => /mset_eq0P->. Qed. Lemma msubset_subset {A B} : A `<=` B -> {subset A <= B}. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP AB x; rewrite !in_mset => ?; exact: (leq_trans _ (AB _)). Qed. Lemma msetB_eq0 (A B : {mset K}) : (A `\` B == mset0) = (A `<=` B). Proof. apply/mset_eqP/msubsetP => AB a; by have := AB a; rewrite !msetE -subn_eq0 => /eqP. Qed. Lemma msubset_refl A : A `<=` A. Proof. exact/msubsetP. Qed. Hint Resolve msubset_refl. Lemma msubset_trans : transitive (@msubset K). Proof. (* Goal: @transitive (@multiset_of K (Phant (Choice.sort K))) (@msubset K) *) move=> y x z /msubsetP xy /msubsetP yz ; apply/msubsetP => a. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: (leq_trans (xy _)). Qed. Arguments msubset_trans {C A B} _ _ : rename. Lemma msetUS C A B : A `<=` B -> C `|` A `<=` C `|` B. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> sAB; apply/msubsetP=> x; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite geq_max !leq_max leqnn (msubsetP sAB) orbT. Qed. Lemma msetDS C A B : A `<=` B -> C `+` A `<=` C `+` B. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_add2l. Qed. Lemma msetSU C A B : A `<=` B -> A `|` C `<=` B `|` C. Proof. by move=> sAB; rewrite -!(msetUC C) msetUS. Qed. Lemma msetSD C A B : A `<=` B -> A `+` C `<=` B `+` C. Proof. by move=> sAB; rewrite -!(msetDC C) msetDS. Qed. Lemma msetUSS A B C D : A `<=` C -> B `<=` D -> A `|` B `<=` C `|` D. Proof. by move=> /(msetSU B) /msubset_trans sAC /(msetUS C)/sAC. Qed. Lemma msetDSS A B C D : A `<=` C -> B `<=` D -> A `+` B `<=` C `+` D. Proof. by move=> /(msetSD B) /msubset_trans sAC /(msetDS C)/sAC. Qed. Lemma msetIidPl {A B} : reflect (A `&` B = A) (A `<=` B). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply: (iffP msubsetP) => [?|<- a]; last by rewrite !msetE geq_min leqnn orbT. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP => a; rewrite !msetE (minn_idPl _). Qed. Lemma msetIidPr {A B} : reflect (A `&` B = B) (B `<=` A). Proof. by rewrite msetIC; apply: msetIidPl. Qed. Lemma msubsetIidl A B : (A `<=` A `&` B) = (A `<=` B). Proof. (* Goal: @eq bool (@msubset K A (@msetI K A B)) (@msubset K A B) *) apply/msubsetP/msubsetP=> sAB a; have := sAB a; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite leq_min leqnn. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move/minn_idPl->. Qed. Lemma msubsetIidr A B : (B `<=` A `&` B) = (B `<=` A). Proof. by rewrite msetIC msubsetIidl. Qed. Lemma msetUidPr A B : reflect (A `|` B = B) (A `<=` B). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply: (iffP msubsetP) => [AB|<- a]; last by rewrite !msetE leq_max leqnn. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP=> a; rewrite !msetE (maxn_idPr _). Qed. Lemma msetUidPl A B : reflect (A `|` B = A) (B `<=` A). Proof. by rewrite msetUC; apply/msetUidPr. Qed. Lemma msubsetUl A B : A `<=` A `|` B. Proof. by apply/msubsetP=> a; rewrite !msetE leq_maxl. Qed. Hint Resolve msubsetUl. Lemma msubsetUr A B : B `<=` (A `|` B). Proof. by rewrite msetUC. Qed. Hint Resolve msubsetUr. Lemma msubsetU1 x A : A `<=` (x |` A). Proof. by rewrite msubsetUr. Qed. Hint Resolve msubsetU1. Lemma msubsetU A B C : (A `<=` B) || (A `<=` C) -> A `<=` (B `|` C). Proof. by move=> /orP [] /msubset_trans ->. Qed. Lemma eqEmsubset A B : (A == B) = (A `<=` B) && (B `<=` A). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/eqP/andP => [<-|[/msubsetP AB /msubsetP BA]]; first by split. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP=> a; apply/eqP; rewrite eqn_leq AB BA. Qed. Lemma msubEproper A B : A `<=` B = (A == B) || (A `<` B). Proof. by rewrite eqEmsubset -andb_orr orbN andbT. Qed. Lemma mproper_sub A B : A `<` B -> A `<=` B. Proof. by rewrite msubEproper orbC => ->. Qed. Lemma eqVmproper A B : A `<=` B -> A = B \/ A `<` B. Proof. by rewrite msubEproper => /predU1P. Qed. Lemma mproperEneq A B : A `<` B = (A != B) && (A `<=` B). Proof. by rewrite andbC eqEmsubset negb_and andb_orr andbN. Qed. Lemma mproper_neq A B : A `<` B -> A != B. Proof. by rewrite mproperEneq; case/andP. Qed. Lemma eqEmproper A B : (A == B) = (A `<=` B) && ~~ (A `<` B). Proof. by rewrite negb_and negbK andb_orr andbN eqEmsubset. Qed. Lemma msub0set A : msubset mset0 A. Proof. by apply/msubsetP=> x; rewrite msetE. Qed. Hint Resolve msub0set. Lemma msubset0 A : (A `<=` mset0) = (A == mset0). Proof. by rewrite eqEmsubset msub0set andbT. Qed. Lemma mproper0 A : (mproper mset0 A) = (A != mset0). Proof. by rewrite /mproper msub0set msubset0. Qed. Lemma mproperE A B : (A `<` B) = (A `<=` B) && ~~ (msubset B A). Proof. by []. Qed. Lemma mproper_sub_trans B A C : A `<` B -> B `<=` C -> A `<` C. Proof. (* Goal: forall (_ : is_true (@msubset K A B)) (_ : is_true (@mproper K B C)), is_true (@mproper K A C) *) move=> /andP [AB NBA] BC; rewrite /mproper (msubset_trans AB) //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: contra NBA=> /(msubset_trans _)->. Qed. Lemma msub_proper_trans B A C : A `<=` B -> B `<` C -> A `<` C. Proof. (* Goal: forall (_ : is_true (@msubset K A B)) (_ : is_true (@mproper K B C)), is_true (@mproper K A C) *) move=> AB /andP [CB NCB]; rewrite /mproper (msubset_trans AB) //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: contra NCB=> /msubset_trans->. Qed. Lemma msubset_neq0 A B : A `<=` B -> A != mset0 -> B != mset0. Proof. by rewrite -!mproper0 => sAB /mproper_sub_trans->. Qed. (* msub is a morphism *) Lemma msetBDKC A B : A `<=` B -> A `+` (B `\` A) = B. Proof. by move=> /msubsetP AB; apply/msetP=> a; rewrite !msetE subnKC. Qed. Lemma msetBDK A B : A `<=` B -> B `\` A `+` A = B. Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subnK. Qed. Lemma msetBBK A B : A `<=` B -> B `\` (B `\` A) = A. Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subKn. Qed. Lemma msetBD1K A B a : A `<=` B -> A a < B a -> a +` (B `\` (a +` A)) = B `\` A. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> /msubsetP AB ABa; apply/msetP => b; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by case: ifP => //= /eqP->; rewrite !add1n subnSK. Qed. Lemma subset_msetBLR A B C : (msubset (A `\` B) C) = (A `<=` B `+` C). Proof. apply/msubsetP/msubsetP => [] sABC a; by have := sABC a; rewrite !msetE ?leq_subLR. Qed. Lemma msetnP n x a : reflect (0 < n /\ x = a) (x \in msetn n a). Proof. by do [apply: (iffP idP); rewrite !inE] => [/andP[]|[]] -> /eqP. Qed. Lemma gt0_msetnP n x a : 0 < n -> reflect (x = a) (x \in msetn n a). Proof. by move=> n_gt0; rewrite inE n_gt0 /=; exact: eqP. Qed. Lemma msetn1 n a : a \in msetn n a = (n > 0). Proof. by rewrite inE eqxx andbT. Qed. Lemma mset1P x a : reflect (x = a) (x \in [mset a]). Proof. by rewrite inE; exact: eqP. Qed. Lemma mset11 a : a \in [mset a]. Proof. by rewrite inE /=. Qed. Lemma msetn_inj n : n > 0 -> injective (@msetn K n). Proof. (* Goal: @transitive (@multiset_of K (Phant (Choice.sort K))) (@msubset K) *) move=> n_gt0 a b eqsab; apply/(gt0_msetnP _ _ n_gt0). (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite -eqsab inE n_gt0 eqxx. Qed. Lemma mset1UP x a B : reflect (x = a \/ x \in B) (x \in a |` B). Proof. by rewrite !inE; exact: predU1P. Qed. Lemma mset_cons a s : seq_mset (a :: s) = a +` (seq_mset s). Proof. by apply/msetP=> x; rewrite !msetE /= eq_sym. Qed. (* intersection *) Lemma msetIP x A B : reflect (x \in A /\ x \in B) (x \in A `&` B). Proof. by rewrite inE; apply: andP. Qed. Lemma msetIS C A B : A `<=` B -> C `&` A `<=` C `&` B. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> sAB; apply/msubsetP=> x; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite leq_min !geq_min leqnn (msubsetP sAB) orbT. Qed. Lemma msetSI C A B : A `<=` B -> A `&` C `<=` B `&` C. Proof. by move=> sAB; rewrite -!(msetIC C) msetIS. Qed. Lemma msetISS A B C D : A `<=` C -> B `<=` D -> A `&` B `<=` C `&` D. Proof. by move=> /(msetSI B) /msubset_trans sAC /(msetIS C) /sAC. Qed. (* difference *) Lemma msetSB C A B : A `<=` B -> A `\` C `<=` B `\` C. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2r. Qed. Lemma msetBS C A B : A `<=` B -> C `\` B `<=` C `\` A. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2l. Qed. Lemma msetBSS A B C D : A `<=` C -> D `<=` B -> A `\` B `<=` C `\` D. Proof. by move=> /(msetSB B) /msubset_trans sAC /(msetBS C) /sAC. Qed. Lemma msetB0 A : A `\` mset0 = A. Proof. by apply/msetP=> x; rewrite !msetE subn0. Qed. Lemma mset0B A : mset0 `\` A = mset0. Proof. by apply/msetP=> x; rewrite !msetE sub0n. Qed. Lemma msetBxx A : A `\` A = mset0. Proof. by apply/msetP=> x; rewrite !msetE subnn. Qed. (* other inclusions *) Lemma msubsetIl A B : A `&` B `<=` A. Proof. by apply/msubsetP=> x; rewrite msetE geq_minl. Qed. Lemma msubsetIr A B : A `&` B `<=` B. Proof. by apply/msubsetP=> x; rewrite msetE geq_minr. Qed. Lemma msubsetDl A B : A `\` B `<=` A. Proof. by apply/msubsetP=> x; rewrite msetE leq_subLR leq_addl. Qed. Lemma msubD1set A x : A `\ x `<=` A. Proof. by rewrite msubsetDl. Qed. Hint Resolve msubsetIl msubsetIr msubsetDl msubD1set. (* cardinal lemmas for msets *) Lemma mem_mset1U a A : a \in A -> a |` A = A. Proof. (* Goal: forall _ : is_true (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A)), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetU K (@msetn K (S O) a) A) A *) rewrite in_mset => aA; apply/msetP => x; rewrite !msetE (maxn_idPr _) //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have [->|//] := altP eqP; rewrite (leq_trans _ aA). Qed. Lemma mem_msetD1 a A : a \notin A -> A `\ a = A. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> /mset_eq0P aA; apply/msetP => x; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have [->|] := altP eqP; rewrite ?aA ?subn0. Qed. Lemma msetIn a A n : A `&` msetn n a = msetn (minn (A a) n) a. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP => x; rewrite !msetE; have [->|] := altP eqP; rewrite ?minn0. Qed. Lemma msubIset A B C : (B `<=` A) || (C `<=` A) -> (B `&` C `<=` A). Proof. by case/orP; apply: msubset_trans; rewrite (msubsetIl, msubsetIr). Qed. Lemma msubsetI A B C : (A `<=` B `&` C) = (A `<=` B) && (A `<=` C). Proof. (* Goal: @eq bool (@msubset K A (@msetI K B C)) (andb (@msubset K A B) (@msubset K A C)) *) rewrite !(sameP msetIidPl eqP) msetIA; have [-> //| ] := altP (A `&` B =P A). (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: contraNF => /eqP <-; rewrite -msetIA -msetIIl msetIAC. Qed. Lemma msubsetIP A B C : reflect (A `<=` B /\ A `<=` C) (A `<=` B `&` C). Proof. by rewrite msubsetI; exact: andP. Qed. Lemma msubUset A B C : (B `|` C `<=` A) = (B `<=` A) && (C `<=` A). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/idP/idP => [subA|/andP [AB CA]]; last by rewrite -[A]msetUid msetUSS. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite !(msubset_trans _ subA). Qed. Lemma msubUsetP A B C : reflect (A `<=` C /\ B `<=` C) (A `|` B `<=` C). Proof. by rewrite msubUset; exact: andP. Qed. Lemma msetU_eq0 A B : (A `|` B == mset0) = (A == mset0) && (B == mset0). Proof. by rewrite -!msubset0 msubUset. Qed. Lemma setD_eq0 A B : (A `\` B == mset0) = (A `<=` B). Proof. by rewrite -msubset0 subset_msetBLR msetD0. Qed. Lemma msub1set A a : ([mset a] `<=` A) = (a \in A). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/msubsetP/idP; first by move/(_ a); rewrite msetnxx in_mset. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> ainA b; rewrite msetnE; case: eqP => // ->; rewrite -in_mset. Qed. Lemma msetDBA A B C : C `<=` B -> A `+` B `\` C = (A `+` B) `\` C. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP CB; apply/msetP=> a; rewrite !msetE2 addnBA. Qed. Lemma mset_0Vmem A : (A = mset0) + {x : K | x \in A}. Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) have [/fsetP Aisfset0 | [a ainA]] := fset_0Vmem (finsupp A); last first. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by right; exists a; rewrite -msuppE. left; apply/msetP => a; rewrite mset0E; apply/mset_eq0P. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite -msuppE Aisfset0 inE. Qed. Definition size_mset A : size A = \sum_(a <- finsupp A) A a. Proof. by rewrite -sum1_size sum_mset; apply: eq_bigr => i; rewrite muln1. Qed. Lemma size_mset0 : size (mset0 : {mset K}) = 0. Proof. by rewrite -sum1_size big_mset0. Qed. From mathcomp Require Import tuple. Lemma sum_nat_seq_eq0 (I : eqType) r (P : pred I) (E : I -> nat) : (\sum_(i <- r | P i) E i == 0) = all [pred i | P i ==> (E i == 0)] r. Proof. (* Goal: @eq bool (@eq_op nat_eqType (@BigOp.bigop nat (Equality.sort I) O r (fun i : Equality.sort I => @BigBody nat (Equality.sort I) i addn (P i) (E i))) O) (@all (Equality.sort I) (@pred_of_simpl (Equality.sort I) (@SimplPred (Equality.sort I) (fun i : Equality.sort I => implb (P i) (@eq_op nat_eqType (E i) O)))) r) *) rewrite big_tnth sum_nat_eq0; apply/forallP/allP => /= HE x. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /seq_tnthP[i ->]; apply: HE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: HE; rewrite mem_tnth. Qed. Lemma size_mset_eq0 A : (size A == 0) = (A == mset0). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/idP/eqP => [|->]; last by rewrite size_mset0. rewrite size_mset sum_nat_seq_eq0 => /allP AP. apply/msetP => a /=; rewrite msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have /= := AP a; case: finsuppP => // _ /(_ _)/eqP->. Qed. End MSetTheory.
"(*************************************************************************)\n(* Goal: forall _ : @e(...TRUNCATED)
"From mathcomp\nRequire Import ssreflect ssrbool eqtype ssrfun ssrnat choice seq.\nFrom mathcomp\nRe(...TRUNCATED)
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
3
Edit dataset card