Datasets:
File size: 1,785 Bytes
33e8a13 fce0648 4e69905 33e8a13 fce0648 33e8a13 4e69905 33e8a13 4e69905 33e8a13 4e69905 33e8a13 4e69905 33e8a13 c1c084b 33e8a13 e834dbc 4e69905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
"""ViHOS - Vietnamese Hate and Offensive Spans dataset"""
import pandas as pd
import datasets
_DESCRIPTION = """\
This is a dataset of Vietnamese Hate and Offensive Spans dataset from social media texts.
"""
_HOMEPAGE = "https://huggingface.co/datasets/phusroyal/ViHOS"
_LICENSE = "mit"
_URLS = [
"https://huggingface.co/datasets/phusroyal/ViHOS/blob/main/train_span_extraction/train.csv"
]
class ViHOS(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("2.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"content": datasets.Value("string"),
"index_spans": datasets.Value("string")
}
),
homepage=_HOMEPAGE,
license=_LICENSE
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir[0],
"split": "train",
},
)
]
def _generate_examples(self, filepath, split):
colnames=['id', 'Content', 'Span ids']
with open(filepath, 'r', encoding="utf-8") as f:
for i, line in enumerate(f):
data = pd.read_csv(f, colnames=colnames, header = None)
yield i, data
# data = pd.read_csv(filepath, colnames=colnames, header = None)
# yield data.iloc[:, 0], dataframe.iloc[:, 1], dataframe.iloc[:, 2] |