Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
Persian
Size:
1K<n<10K
ArXiv:
License:
File size: 5,460 Bytes
d3d1438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ParsiNLU Persian reading comprehension task"""
from __future__ import absolute_import, division, print_function
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{huggingface:dataset,
title = {ParsiNLU: A Suite of Language Understanding Challenges for Persian},
authors = {Khashabi, Daniel and Cohan, Arman and Shakeri, Siamak and Hosseini, Pedram and Pezeshkpour, Pouya and Alikhani, Malihe and Aminnaseri, Moin and Bitaab, Marzieh and Brahman, Faeze and Ghazarian, Sarik and others},
year={2020}
journal = {arXiv e-prints},
eprint = {2012.06154},
}
"""
# You can copy an official description
_DESCRIPTION = """\
A Persian reading comprehenion task (generating an answer, given a question and a context paragraph).
The questions are mined using Google auto-complete, their answers and the corresponding evidence documents are manually annotated by native speakers.
"""
_HOMEPAGE = "https://github.com/persiannlp/parsinlu/"
_LICENSE = "CC BY-NC-SA 4.0"
_URL = "https://raw.githubusercontent.com/persiannlp/parsinlu/master/data/reading_comprehension/"
_URLs = {
"train": _URL + "train.jsonl",
"dev": _URL + "dev.jsonl",
"test": _URL + "eval.jsonl",
}
class ParsinluReadingComprehension(datasets.GeneratorBasedBuilder):
"""ParsiNLU Persian reading comprehension task."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="parsinlu-repo", version=VERSION, description="ParsiNLU repository: reading-comprehension"
),
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"url": datasets.Value("string"),
"context": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"answer_start": datasets.Value("int32"),
"answer_text": datasets.Value("string"),
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["dev"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
logger.info("generating examples from = %s", filepath)
def get_answer_index(passage, answer):
return passage.index(answer) if answer in passage else -1
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
answer = data["answers"]
if type(answer[0]) == str:
answer = [{"answer_start": get_answer_index(data["passage"], x), "answer_text": x} for x in answer]
else:
answer = [{"answer_start": x[0], "answer_text": x[1]} for x in answer]
yield id_, {
"question": data["question"],
"url": str(data["url"]),
"context": data["passage"],
"answers": answer,
}
|