File size: 8,563 Bytes
aa49e8f dd35cd8 aa49e8f dd35cd8 0d0ed82 aa49e8f c5c69f6 aa49e8f 0d0ed82 41709df 5a1ff12 0a78ce2 60c4d96 0a78ce2 60c4d96 0a78ce2 60c4d96 0a78ce2 6f47c6c aa49e8f 41709df aa49e8f 88cbfd0 aa49e8f bb4fb5e 0a78ce2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- text-retrieval
task_ids:
- dialogue-modeling
- utterance-retrieval
paperswithcode_id: pec
pretty_name: Persona-Based Empathetic Conversational
dataset_info:
- config_name: happy
features:
- name: personas
sequence: string
- name: context
sequence: string
- name: context_speakers
sequence: string
- name: response
dtype: string
- name: response_speaker
dtype: string
splits:
- name: train
num_bytes: 643196978
num_examples: 157195
- name: test
num_bytes: 92003042
num_examples: 22730
- name: validation
num_bytes: 81132088
num_examples: 19829
download_size: 252434681
dataset_size: 816332108
- config_name: offmychest
features:
- name: personas
sequence: string
- name: context
sequence: string
- name: context_speakers
sequence: string
- name: response
dtype: string
- name: response_speaker
dtype: string
splits:
- name: train
num_bytes: 518616402
num_examples: 123968
- name: test
num_bytes: 64173390
num_examples: 15324
- name: validation
num_bytes: 66675909
num_examples: 16004
download_size: 252434681
dataset_size: 649465701
- config_name: all
features:
- name: personas
sequence: string
- name: context
sequence: string
- name: context_speakers
sequence: string
- name: response
dtype: string
- name: response_speaker
dtype: string
splits:
- name: train
num_bytes: 1162655628
num_examples: 281163
- name: test
num_bytes: 156310498
num_examples: 38054
- name: validation
num_bytes: 147940164
num_examples: 35833
download_size: 252434681
dataset_size: 1466906290
config_names:
- all
- happy
- offmychest
---
# Dataset Card for PEC
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [PEC repository](https://github.com/zhongpeixiang/PEC)
- **Paper:** [Towards Persona-Based Empathetic Conversational Models](https://www.aclweb.org/anthology/2020.emnlp-main.531/)
- **Point of Contact:** [Peixiang Zhong](mailto:zhongpeixiang@gmail.com)
### Dataset Summary
The PEC dataset is an English-language dataset of open-domain conversations gathered from two subreddits on Reddit, i.e., happy and offmychest. PEC has around 350K persona-based empathetic conversations. Each utterance is associated with a speaker, and each speaker has a persona of multiple persona sentences. The conversations in PEC are more empathetic than casual conversations. The conversations in the happy domain are mostly positive, whereas the conversations in the offmychest domain are mostly negative.
### Supported Tasks and Leaderboards
- `dialogue-modeling`, `utterance-retrieval`: this dataset can be used to train a generative or retrieval-based conversational model.
### Languages
English
## Dataset Structure
### Data Instances
A typical data example comprises a list of context utterances, a list of context speakers, a response to the context, the response speaker and the persona of the response speaker.
An example from PEC looks as follows:
```
{'context': ['found out this morning i got a job promotion ! ! !'],
'context_speakers': ['HeWentToJared91'],
'personas': [
"i ca n't stand working in the ugli .",
'i ’ve always liked my eyes except for the fact that they ca n’t shoot lasers',
'i feel really bad about myself as a person right now , and i could really use a hand .',
'i drank a coffee , and it just made me feel even more exhausted .',
'i want a natsuki t shirt',
"i 've dealt with depression in the past .",
'i love red dead 2'],
'response': "you look like a nice person ! we 're proud of you , and i bet you earned that promotion !",
'response_speaker': 'tylock'}
```
### Data Fields
- `context`: a list of strings, each string denotes a context utterance.
- `context_speakers`: a list of strings, each string denotes a speaker.
- `response`: a string denoting the response to the `context`.
- `response_speaker`: a string denoting the speaker of `response`.
- `personas`: a list of strings, each string denotes a persona sentence of `response_speaker`.
### Data Splits
The data is split into a training, validation and test set for each of the three domains. Note that the *all* domain is the concatenation of the *happy* and *offmychest* domains.
| domain | train | validation | test |
|------------|-------:|-----------:|------:|
| happy | 157195 | 19829 | 22730 |
| offmychest | 123968 | 16004 | 15324 |
| all | 281163 | 35833 | 38054 |
## Dataset Creation
### Curation Rationale
PEC was built to provide a testbed for machines to learn persona-based empathetic responding. In our empirical analysis, we found that different personas have different styles of empathetic responding. This dataset can also be used to investigate the link between persona and empathy in human conversations. According to our human assessment, the conversations on the happy and offmychest subreddits are significantly more empathetic than casual conversations.
### Source Data
#### Initial Data Collection and Normalization
The data was obtained via the [pushshift API](https://pushshift.io/using-bigquery-with-reddit-data/) via Google BigQuery.
#### Who are the source language producers?
The language producers are users of the [r/happy](https://www.reddit.com/r/happy/), and [r/offmychest](https://www.reddit.com/r/offmychest/) subreddits between 2012 and 2020. No further demographic information was available from the data source.
### Annotations
#### Annotation process
The dataset does not contain any additional annotations.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
The dataset includes the speaker IDs of users on *happy* and *offmychest* subreddits.
## Considerations for Using the Data
### Social Impact of Dataset
The purpose of this dataset is to help develop more personalised and empathetic conversational systems, which is an important milestone towards truly human-like conversational agents.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
A small portion of the dataset has the issues of sexism, hate, and harassment. The persona sentences are noisy.
## Additional Information
### Dataset Curators
The dataset was initially created by Peixiang Zhong, Chen Zhang, Hao Wang, Yong Liu, and Chunyan Miao, jointly done at Nanyang Technological University and Alibaba Group.
### Licensing Information
The licensing status of the dataset hinges on the legal status of the [Pushshift.io](https://files.pushshift.io/reddit/) data which is unclear.
### Citation Information
```
@inproceedings{zhong-etal-2020-towards,
title = "Towards Persona-Based Empathetic Conversational Models",
author = "Zhong, Peixiang and
Zhang, Chen and
Wang, Hao and
Liu, Yong and
Miao, Chunyan",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.531",
pages = "6556--6566"
}
```
### Contributions
Thanks to [@zhongpeixiang](https://github.com/zhongpeixiang) for adding this dataset. |