File size: 9,053 Bytes
28456d8
 
 
 
 
 
 
 
 
 
cb13d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28456d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb13d61
 
 
 
 
 
 
 
 
 
 
 
 
 
28456d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb13d61
 
28456d8
 
 
 
 
cb13d61
28456d8
 
 
 
 
 
cb13d61
 
28456d8
cb13d61
 
28456d8
cb13d61
 
 
 
 
 
28456d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb13d61
 
 
 
 
 
28456d8
 
cb13d61
28456d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
# TO login
# TO CREATE dataset_infos.json use:
#       $ datasets-cli test PET --save_infos --all_configs
#
# DO
#       $ huggingface-cli login
# then.
# in pytohn:
#       dataset.push_to_hub(patriziobellan/PET) to set the preview on the web interface
#
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
import json
import os

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/abs-2203-04860,
  author    = {Patrizio Bellan and
               Han van der Aa and
               Mauro Dragoni and
               Chiara Ghidini and
               Simone Paolo Ponzetto},
  title     = {{PET:} {A} new Dataset for Process Extraction from Natural Language
               Text},
  journal   = {CoRR},
  volume    = {abs/2203.04860},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2203.04860},
  doi       = {10.48550/arXiv.2203.04860},
  eprinttype = {arXiv},
  eprint    = {2203.04860},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2203-04860.bib}
}
"""

# You can copy an official description
_DESCRIPTION = """\
Abstract. Although there is a long tradition of work in NLP on extracting entities and relations from text, to date there exists little work on the acquisition of business processes from unstructured data such as textual corpora of process descriptions. With this work we aim at filling this gap and establishing the first steps towards bridging data-driven information extraction methodologies from Natural Language Processing and the model-based formalization that is aimed from Business Process Management. For this, we develop the first corpus of business process descriptions annotated with activities, gateways, actors and flow information. We present our new resource, including a detailed overview of the annotation schema and guidelines, as well as a variety of baselines to benchmark the difficulty and challenges of business process extraction from text.
"""

_HOMEPAGE = "https://pdi.fbk.eu/pet-dataset/"

_LICENSE = "MIT"

_URL = "https://pdi.fbk.eu/pet/PETHuggingFace/"
# _TRAINING_FILE = "train.json"
# _DEV_FILE = "dev.json"
_TEST_FILE = "test.json"
_TEST_FILE_RELATIONS = 'PETrelations.json'

_NER = 'token-classification'
_RELATIONS_EXTRACTION = 'relations-extraction'
_NER_TAGS = [ "O",
            "B-Actor",
            "I-Actor",
            "B-Activity",
            "I-Activity",
            "B-Activity Data",
            "I-Activity Data",
            "B-Further Specification",
            "I-Further Specification",
            "B-XOR Gateway",
            "I-XOR Gateway",
            "B-Condition Specification",
            "I-Condition Specification",
            "B-AND Gateway",
            "I-AND Gateway"]

_STR_PET = """\n
 _______ _     _ _______       _____  _______ _______      ______  _______ _______ _______ _______ _______ _______
    |    |_____| |______      |_____] |______    |         |     \ |_____|    |    |_____| |______ |______    |   
    |    |     | |______      |       |______    |         |_____/ |     |    |    |     | ______| |______    |   
                                                                                                                  
\n\n\n

Discover more at: [https://pdi.fbk.eu/pet-dataset/]
"""


class PETConfig(datasets.BuilderConfig):
    """The PET Dataset."""

    def __init__(self, **kwargs):
        """BuilderConfig for PET.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PETConfig, self).__init__(**kwargs)

class PET(datasets.GeneratorBasedBuilder):
    """PET DATASET."""

    features_ner = {
            "document name": datasets.Value("string"),
            "sentence-ID": datasets.Value("int8"),
            "tokens": datasets.Sequence(datasets.Value("string")),
            "ner-tags": datasets.Sequence(datasets.features.ClassLabel(names=_NER_TAGS)),
        }

    features_relations = datasets.Sequence(
        datasets.Features(

        {
            'source-head-sentence-ID': datasets.Value("int8"),
            'source-head-word-ID': datasets.Value("int8"),
            'relation-type': datasets.Value("string"),
            'target-head-sentence-ID': datasets.Value("int8"),
            'target-head-word-ID' : datasets.Value("int8"),
        }
    ))
    BUILDER_CONFIGS = [ PETConfig(
                            name=_NER,
                            version=datasets.Version("1.0.1"),
                            description="The PET Dataset for Token Classification"
                            ),
                        PETConfig(
                            name=_RELATIONS_EXTRACTION,
                            version=datasets.Version("1.0.1"),
                            description="The PET Dataset for Relation Extraction"
                            ),
                        ]

    DEFAULT_CONFIG_NAME = _RELATIONS_EXTRACTION

    def _info(self):
        print(_STR_PET)
        if self.config.name == _NER:
            features = datasets.Features(self.features_ner)
        else:
            features = datasets.Features(
                {
                "document name": datasets.Value("string"),
                'tokens':datasets.Sequence(datasets.Value("string")),
                'tokens-IDs':datasets.Sequence(datasets.Value("int8")),
                'ner_tags': datasets.Sequence(datasets.Value("string")),
                'sentence-IDs':datasets.Sequence(datasets.Value("int8")),
                "relations": self.features_relations
                }
            )
        # print(features)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        if self.config.name == _NER:
            urls_to_download = {
                # "train": f"{_URL}{_TRAINING_FILE}",
                # "dev": f"{_URL}{_DEV_FILE}",
                "test": f"{_URL}{_TEST_FILE}",
            }
            downloaded_files = dl_manager.download_and_extract(urls_to_download)
            return [datasets.SplitGenerator(
                        name=datasets.Split.TEST,
                        # These kwargs will be passed to _generate_examples
                        gen_kwargs={
                            "filepath": downloaded_files["test"],
                            "split": "test"
                        },
                    )]
        else:
            urls_to_download = {
                # "train": f"{_URL}{_TRAINING_FILE}",
                # "dev": f"{_URL}{_DEV_FILE}",
                "test": f"{_URL}{_TEST_FILE_RELATIONS}",
            }
            downloaded_files = dl_manager.download_and_extract(urls_to_download)
            return [datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": downloaded_files["test"],
                    "split": "test"
                },
            )]

    def _generate_examples(self, filepath, split):
        if self.config.name == _NER:
            with open(filepath, encoding="utf-8", mode='r') as f:
                for key, row in enumerate(f):
                    row = json.loads(row)
                    yield key, {
                                "document name": row["document name"],
                                "sentence-ID": row["sentence-ID"],
                                "tokens": row["tokens"],
                                "ner-tags": row["ner-tags"]
                                }
        else:
            with open(filepath, encoding="utf-8", mode='r') as f:
                for key, row in enumerate(json.load(f)):
                    yield key, {"document name": row["document name"],  # datasets.Value("string"),
                                'tokens': row["tokens"],  # sentences['tokens'],
                                'tokens-IDs': row["tokens-IDs"],
                                'ner_tags': row["ner_tags"],
                                'sentence-IDs': row["sentence-IDs"],  # sentences['sentence-IDs'],

                                "relations": row["relations"]
                                }