Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
File size: 5,518 Bytes
ae96f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c5cbc7
ae96f17
2f0a0a7
b46f829
 
dd39bef
 
 
 
 
 
 
 
 
7730d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6db1fd
 
 
 
 
 
 
 
 
 
b46f829
 
868b2a1
 
ea44e2f
 
868b2a1
5714201
 
263fdb6
 
 
1170e6e
375e655
5714201
375e655
5714201
 
 
 
 
1a9c458
c979d0d
5714201
 
 
1c96d57
5714201
 
 
 
 
 
295c552
5714201
 
 
 
5f47b9f
 
 
b9bf2cc
d6db1fd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: source
    dtype: string
  - name: file_name
    dtype: string
  - name: cwe
    dtype: string
  splits:
  - name: train
    num_bytes: 87854
    num_examples: 76
  download_size: 53832
  dataset_size: 87854
---
# Static Analysis Eval Benchmark

A dataset of 76 Python programs taken from real Python open source projects (top 1000 on GitHub), 
where each program is a file that has exactly 1 vulnerability as detected by a particular static analyzer (Semgrep).

You can run the `_script_for_eval.py` to check the results.

```
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python _script_for_eval.py
```

For all supported options, run with `--help`:

```
usage: _script_for_eval.py [-h] [--model MODEL] [--cache] [--n_shot N_SHOT] [--use_similarity]

Run Static Analysis Evaluation

options:
  -h, --help        show this help message and exit
  --model MODEL     OpenAI model to use
  --cache           Enable caching of results
  --n_shot N_SHOT   Number of examples to use for few-shot learning
  --use_similarity  Use similarity for fetching dataset examples
```

We need to use the logged in version of Semgrep to get access to more rules for vulnerability detection. So, make sure you login before running the eval script.

```
% semgrep login
API token already exists in /Users/user/.semgrep/settings.yml. To login with a different token logout use `semgrep logout`
```

After the run, the script will also create a log file which captures the stats for the run and the files that were fixed.
You can see an example [here](https://huggingface.co/datasets/patched-codes/static-analysis-eval/blob/main/gpt-4o-mini_semgrep_1.85.0_20240818_215254.log).

# Leaderboard

The top models on the leaderboard are all fine-tuned using the same dataset that we released called [synth vuln fixes](https://huggingface.co/datasets/patched-codes/synth-vuln-fixes).
You can read about our experience with fine-tuning them on our [blog](https://www.patched.codes/blog/a-comparative-study-of-fine-tuning-gpt-4o-mini-gemini-flash-1-5-and-llama-3-1-8b).
You can also explore the leaderboard with this [interactive visualization](https://claude.site/artifacts/5656c16d-9751-407c-9631-a3526c259354).
![Visualization of the leaderboard](./visualization.png)

|           Model           | StaticAnalysisEval (%) |  Time (mins)  | Price (USD) |
|:-------------------------:|:----------------------:|:-------------:|:-----------:|
|   gpt-4o-mini-fine-tuned   |        77.63           |     21:0      |    0.21     |
| gemini-1.5-flash-fine-tuned |        73.68           |     18:0      |             |
| Llama-3.1-8B-Instruct-fine-tuned |        69.74           |     23:0      |             |
|       gpt-4o              |        69.74           |     24:0      |    0.12     |
|       gpt-4o-mini         |        68.42           |     20:0      |    0.07     |
| gemini-1.5-flash-latest   |        68.42           |     18:2      |    0.07     |
| Llama-3.1-405B-Instruct   |        65.78           |     40:12     |             |
| Llama-3-70B-instruct      |        65.78           |     35:2      |             |
| Llama-3-8B-instruct       |        65.78           |     31.34     |             |
| gemini-1.5-pro-latest     |        64.47           |     34:40     |             |
| gpt-4-1106-preview        |        64.47           |     27:56     |    3.04     |
|          gpt-4            |        63.16           |     26:31     |    6.84     |
| claude-3-5-sonnet-20240620|        59.21           |     23:59     |    0.70     |
|  moa-gpt-3.5-turbo-0125   |        53.95           |     49:26     |             |
| gpt-4-0125-preview        |        53.94           |     34:40     |             |
|   patched-coder-7b        |        51.31           |     45.20     |             |
|  patched-coder-34b        |        46.05           |     33:58     |    0.87     |
|    patched-mix-4x7b       |        46.05           |     60:00+    |    0.80     |
|      Mistral-Large        |        40.80           |     60:00+    |             |
|       Gemini-pro          |        39.47           |     16:09     |    0.23     |
|      Mistral-Medium       |        39.47           |     60:00+    |    0.80     |
|      Mixtral-Small        |        30.26           |     30:09     |             |
|   gpt-3.5-turbo-0125      |        28.95           |     21:50     |             |
|  claude-3-opus-20240229   |        25.00           |     60:00+    |             |
| Llama-3-8B-instruct.Q4_K_M|        21.05           |     60:00+    |             |
|      Gemma-7b-it          |        19.73           |     36:40     |             |
|   gpt-3.5-turbo-1106      |        17.11           |     13:00     |    0.23     |
| Codellama-70b-Instruct    |        10.53           |     30.32     |             |
| CodeLlama-34b-Instruct    |         7.89           |     23:16     |             |

The price is calcualted by assuming 1000 input and output tokens per call as all examples in the dataset are < 512 tokens (OpenAI cl100k_base tokenizer). 

Some models timed out during the run or had intermittent API errors. We try each example 3 times in such cases. This is why some runs are reported to be longer than 1 hr (60:00+ mins).

If you want to add your model to the leaderboard, you can send in a PR to this repo with the log file from the evaluation run.