File size: 38,863 Bytes
faa4dea 2d29632 3e17de3 d2635d1 71cf6cc 732d683 b4a76e4 646d44f b6eafbc df4eaeb c2e2caf 4ad24da 52974d4 eb40eea d755d1c e026d9b df5527b b188f00 7127605 4c156ff 4e6c9d8 0436e29 abbbc7e f4f5efb 75fb012 a9a5108 6a0612c 8ec0393 f02da63 ccd8e8e 6eb6168 ab1f5a9 46d4d65 8de4ce6 91a6a97 3768c07 1e69254 dbabdc7 3560b42 4980345 1830ca4 c10f941 57d1da1 52cd770 ff79bed 0b5f126 03f9572 cd3ab53 af0ebac 188bba3 fffef3a a0c3015 0980505 9c3e953 69c4120 c3e6d7e 36ca13d 1afec7a 740d72b 254327a 59431e2 49b55ee e3f2e8c b436b81 a246c7c 6224742 53d457b 9f3cec6 b3b2622 458af59 4371856 9e32922 6ba0cdf 7cfe4cb 671896b ce7df14 deba069 78a2426 2bf52c8 b3ab64f f1aa78e 24baf2e 21bb455 12f3b18 a0a0dce 1be8670 bf64198 dd1be5d 011d757 abb3d1c c05e91e 592ba51 a622128 14e84ba a48d140 bb3281d e35da6d 7ff808e 57da305 e530a6e 5b73d8b 816e2f9 bd26e45 3d19c50 e6ff128 07821e5 e690b8b e5ea027 cb42524 683276a 183d686 1863f61 d398e50 ef62e25 2c7ab47 1960a97 81afb7b b310da7 a40c4e6 efb4c43 1bc8269 e0c02d6 bfcda3f a703351 07e3432 f577657 c8f86db f0c01e1 312f8b5 67645eb c59f4dc e20e7b7 cfdd48a 8353165 a3f85a4 f065f51 3892eea 53ac037 ad02a89 2d1e55e 8353165 528192a 162b2a9 fa45834 0c58d15 4abe9de 7292e4d 102a4b5 bd7e589 9ac0cc9 e6294b0 454feda 83a1e3a 0e670bb 2204142 cc632d2 41ed169 578df49 b88cdef 74992ea 0a595a4 247f6b9 e604af4 0c58d15 7426ddb 02ad120 a87efc1 8dd2e0c a8debe1 33699cc c88610a 29d2081 456a0da c60e7c4 3a13ddf ae027dc d3324c2 0702874 fcdc4a7 d92fc10 ca17d37 e37cc92 58e79ed 704fb0a 8922020 86e2349 5e3707e f06a2b5 34578cf 4b8d52f f6d4ebc c5ea695 9219b52 1d01353 1a82db3 118acac 80325e8 29b4432 33bc19b 75fa665 03dc9fe 5fba410 b304ebf aa5d29c 39d23c7 0f53809 bd8159a 4dd7f43 0cdc808 0daa96f 467647d 24b1b93 5a4c002 4f91219 e16d6a8 d9d3501 aa257a2 f985760 4d4f2b1 4db6066 aa257a2 4f91219 b66b488 d76c0a5 7bc9083 9ca1b3f aa9bc45 3dcb1ab 2b10bd6 dcd3bce 1cc8423 b6361af de2f31b d4aca4e faa4dea 443ddf1 8a83f7a 2d29632 3e17de3 5d0e777 d2635d1 8ab7be2 972c8ce f3b6b53 a213fb8 71cf6cc 4aaa225 89b24c2 732d683 36336ef c1c5b74 bcbdf69 646d44f 28aee33 ce7ec2a aecfa6c 99f19fb 52974d4 eb40eea d755d1c 92fcac4 7127605 0d19ecd 4c156ff aca10ec 0436e29 abbbc7e f4f5efb 75fb012 a9a5108 9aadb65 6a0612c 8ec0393 f02da63 ccd8e8e 6eb6168 ab1f5a9 46d4d65 91a6a97 3768c07 763867f 028adf3 dbabdc7 3560b42 4980345 2b47f95 b2534bc 1830ca4 c10f941 57d1da1 52cd770 ff79bed 0b5f126 dca2d9c 41a1871 d8ab4ac af0ebac 188bba3 fffef3a a0c3015 36ca13d 1afec7a 8d64994 c9570d9 a492105 49b55ee e3f2e8c a246c7c c1d6003 5c71a7c 6224742 7f3ecb2 9f3cec6 df5f3c6 458af59 9e32922 6ba0cdf cd3168b 7cfe4cb ce7df14 deba069 2bf52c8 b3ab64f f1aa78e 24baf2e b7fa2d4 21bb455 43f81a6 ae71acd 1748850 20f998a 12f3b18 6e8c673 a1d0276 dd1be5d c05e91e 14e84ba a48d140 bb3281d e35da6d 7ff808e 57da305 a5dfafb 8a341d2 5bf3653 76a8e3c 47d2ef3 e530a6e e6ff128 07821e5 e690b8b e5ea027 cb42524 683276a efa72a0 183d686 1863f61 2c7ab47 1960a97 81afb7b b310da7 a40c4e6 3067fcc efb4c43 54625c8 311326a 1bc8269 302e4e6 e0c02d6 b121203 bfcda3f 25ba0bb a703351 07e3432 f577657 c8f86db f0c01e1 561780e 312f8b5 3899915 cfdd48a 8f53384 a7e7dd7 65c5d6d d9ff462 a7247b2 e8043f6 f065f51 3892eea 586df7a 28aa26b 955a634 2769421 528192a 653cc59 5360343 48c35fd a63e1e9 4abe9de b8a8cc1 7292e4d 3a54cfe bd7e589 dc82eab 9ac0cc9 83a1e3a 578df49 b88cdef 74992ea 247f6b9 02ad120 d519d13 1d3a22a b846d06 8dd2e0c a8debe1 c88610a 456a0da a87efc1 83fc87a c60e7c4 3a13ddf ae027dc d3324c2 0702874 57e2e87 ab18a2f d92fc10 ca17d37 e37cc92 58e79ed 704fb0a 8922020 a5c5951 edc0553 86e2349 2304a00 5e3707e f06a2b5 9e5cb68 34578cf c5ea695 9219b52 1a82db3 118acac 29b4432 c45a232 9876082 33bc19b 75fa665 5fba410 b304ebf aa5d29c 39d23c7 bd8159a 4dd7f43 0cdc808 0daa96f 467647d 5a4c002 65333e2 d9d3501 af36bd4 4d4f2b1 4db6066 b66b488 2b10bd6 dcd3bce 1cc8423 b6361af de2f31b d4aca4e faa4dea c07ad24 faa4dea 0a625e8 faa4dea ed00af0 faa4dea a41d02e 15fabab faa4dea 04c7c99 faa4dea 17f5901 faa4dea 17f5901 faa4dea 17f5901 509425d faa4dea fd3d68e faa4dea cfbf644 faa4dea 2e7225b faa4dea 2e7225b faa4dea 2e7225b faa4dea 18d6d68 faa4dea cf301f6 faa4dea bcc7671 faa4dea cf301f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 |
---
license: cc-by-sa-4.0
dataset_info:
features:
- name: video_id
dtype: string
- name: chunk_idx
dtype: int64
- name: chunk_text
dtype: string
- name: video_metadata
dtype: string
- name: video_language
dtype: string
- name: chunk_media
dtype: string
splits:
- name: shard_10339
num_bytes: 1997009
num_examples: 631
- name: shard_10400
num_bytes: 2638827
num_examples: 722
- name: shard_10324
num_bytes: 1700655
num_examples: 515
- name: shard_10418
num_bytes: 3034319
num_examples: 947
- name: shard_1045
num_bytes: 2042334
num_examples: 648
- name: shard_10428
num_bytes: 2314345
num_examples: 706
- name: shard_10435
num_bytes: 2300183
num_examples: 677
- name: shard_10424
num_bytes: 1839226
num_examples: 552
- name: shard_10442
num_bytes: 1543285
num_examples: 419
- name: shard_10411
num_bytes: 2005599
num_examples: 604
- name: shard_10344
num_bytes: 1796239
num_examples: 589
- name: shard_10439
num_bytes: 1780546
num_examples: 567
- name: shard_10351
num_bytes: 2156111
num_examples: 677
- name: shard_10446
num_bytes: 2117151
num_examples: 525
- name: shard_10457
num_bytes: 1851306
num_examples: 555
- name: shard_10464
num_bytes: 1316832
num_examples: 440
- name: shard_10405
num_bytes: 1820556
num_examples: 613
- name: shard_10471
num_bytes: 2397197
num_examples: 682
- name: shard_10456
num_bytes: 1279577
num_examples: 430
- name: shard_1035
num_bytes: 2102014
num_examples: 687
- name: shard_10430
num_bytes: 2293697
num_examples: 686
- name: shard_10469
num_bytes: 2521584
num_examples: 743
- name: shard_10360
num_bytes: 2329044
num_examples: 680
- name: shard_10443
num_bytes: 2222280
num_examples: 641
- name: shard_10453
num_bytes: 3277011
num_examples: 931
- name: shard_10481
num_bytes: 2163505
num_examples: 709
- name: shard_10482
num_bytes: 1885620
num_examples: 503
- name: shard_10365
num_bytes: 1789825
num_examples: 453
- name: shard_10475
num_bytes: 2290432
num_examples: 635
- name: shard_10444
num_bytes: 1915386
num_examples: 550
- name: shard_10493
num_bytes: 2240928
num_examples: 752
- name: shard_10433
num_bytes: 1728758
num_examples: 554
- name: shard_10486
num_bytes: 1946726
num_examples: 564
- name: shard_1037
num_bytes: 1622214
num_examples: 464
- name: shard_1049
num_bytes: 2142677
num_examples: 691
- name: shard_10507
num_bytes: 1404701
num_examples: 444
- name: shard_10479
num_bytes: 2668644
num_examples: 706
- name: shard_10543
num_bytes: 1567113
num_examples: 498
- name: shard_10494
num_bytes: 2572169
num_examples: 834
- name: shard_10506
num_bytes: 2352799
num_examples: 689
- name: shard_10497
num_bytes: 2130672
num_examples: 640
- name: shard_10503
num_bytes: 2821589
num_examples: 657
- name: shard_10488
num_bytes: 2610372
num_examples: 824
- name: shard_1050
num_bytes: 2380295
num_examples: 610
- name: shard_10379
num_bytes: 2121338
num_examples: 596
- name: shard_10258
num_bytes: 2899614
num_examples: 881
- name: shard_10521
num_bytes: 1751228
num_examples: 578
- name: shard_10477
num_bytes: 1987455
num_examples: 610
- name: shard_10510
num_bytes: 1809438
num_examples: 536
- name: shard_10518
num_bytes: 1554268
num_examples: 534
- name: shard_10514
num_bytes: 2398872
num_examples: 659
- name: shard_10366
num_bytes: 2686341
num_examples: 715
- name: shard_10462
num_bytes: 3202984
num_examples: 912
- name: shard_10512
num_bytes: 2058849
num_examples: 697
- name: shard_10558
num_bytes: 2065125
num_examples: 572
- name: shard_10383
num_bytes: 2580580
num_examples: 859
- name: shard_10550
num_bytes: 2617491
num_examples: 643
- name: shard_10536
num_bytes: 2352902
num_examples: 649
- name: shard_10529
num_bytes: 1970611
num_examples: 633
- name: shard_10565
num_bytes: 1569669
num_examples: 522
- name: shard_10538
num_bytes: 2012923
num_examples: 564
- name: shard_10532
num_bytes: 1839647
num_examples: 594
- name: shard_10531
num_bytes: 2125990
num_examples: 618
- name: shard_10382
num_bytes: 1770026
num_examples: 493
- name: shard_1058
num_bytes: 1707150
num_examples: 491
- name: shard_10525
num_bytes: 3210740
num_examples: 892
- name: shard_10594
num_bytes: 1369358
num_examples: 458
- name: shard_10572
num_bytes: 1859423
num_examples: 489
- name: shard_1054
num_bytes: 2011157
num_examples: 601
- name: shard_10396
num_bytes: 3458836
num_examples: 956
- name: shard_10608
num_bytes: 2063015
num_examples: 625
- name: shard_10554
num_bytes: 2017977
num_examples: 529
- name: shard_10600
num_bytes: 1895994
num_examples: 568
- name: shard_10509
num_bytes: 1324378
num_examples: 402
- name: shard_10399
num_bytes: 2104822
num_examples: 713
- name: shard_10409
num_bytes: 1595466
num_examples: 476
- name: shard_10563
num_bytes: 2209694
num_examples: 792
- name: shard_10583
num_bytes: 2328975
num_examples: 681
- name: shard_10397
num_bytes: 1736501
num_examples: 585
- name: shard_10595
num_bytes: 2393314
num_examples: 705
- name: shard_10414
num_bytes: 1946475
num_examples: 625
- name: shard_10622
num_bytes: 2213391
num_examples: 641
- name: shard_10590
num_bytes: 2321541
num_examples: 778
- name: shard_1042
num_bytes: 1894737
num_examples: 584
- name: shard_10613
num_bytes: 2204566
num_examples: 656
- name: shard_1062
num_bytes: 2548349
num_examples: 795
- name: shard_10607
num_bytes: 2501284
num_examples: 706
- name: shard_10587
num_bytes: 3077388
num_examples: 876
- name: shard_10589
num_bytes: 1711464
num_examples: 519
- name: shard_10637
num_bytes: 2165818
num_examples: 687
- name: shard_10659
num_bytes: 1797910
num_examples: 617
- name: shard_10626
num_bytes: 1543683
num_examples: 469
- name: shard_10552
num_bytes: 1997256
num_examples: 581
- name: shard_10436
num_bytes: 1948404
num_examples: 648
- name: shard_10645
num_bytes: 1932871
num_examples: 599
- name: shard_10604
num_bytes: 2224582
num_examples: 580
- name: shard_10632
num_bytes: 3291451
num_examples: 839
- name: shard_10611
num_bytes: 2496793
num_examples: 744
- name: shard_10673
num_bytes: 2019733
num_examples: 571
- name: shard_10651
num_bytes: 2494834
num_examples: 814
- name: shard_1063
num_bytes: 2285316
num_examples: 567
- name: shard_10670
num_bytes: 1678940
num_examples: 520
- name: shard_10633
num_bytes: 1144822
num_examples: 317
- name: shard_10639
num_bytes: 1980963
num_examples: 591
- name: shard_10574
num_bytes: 2322077
num_examples: 650
- name: shard_10658
num_bytes: 2610634
num_examples: 804
- name: shard_10664
num_bytes: 2138512
num_examples: 664
- name: shard_10640
num_bytes: 2138491
num_examples: 632
- name: shard_10648
num_bytes: 2334731
num_examples: 637
- name: shard_10701
num_bytes: 2025707
num_examples: 644
- name: shard_10677
num_bytes: 1719218
num_examples: 559
- name: shard_10688
num_bytes: 1998554
num_examples: 607
- name: shard_10680
num_bytes: 1800096
num_examples: 546
- name: shard_10596
num_bytes: 1541386
num_examples: 471
- name: shard_10441
num_bytes: 1993580
num_examples: 597
- name: shard_10683
num_bytes: 2145354
num_examples: 638
- name: shard_10684
num_bytes: 2049918
num_examples: 600
- name: shard_10696
num_bytes: 2556611
num_examples: 704
- name: shard_10733
num_bytes: 1506424
num_examples: 562
- name: shard_10716
num_bytes: 1373410
num_examples: 382
- name: shard_10447
num_bytes: 1789843
num_examples: 552
- name: shard_10727
num_bytes: 1704350
num_examples: 542
- name: shard_1074
num_bytes: 2202555
num_examples: 627
- name: shard_10662
num_bytes: 2446389
num_examples: 678
- name: shard_10714
num_bytes: 2864249
num_examples: 997
- name: shard_10655
num_bytes: 2225408
num_examples: 664
- name: shard_10767
num_bytes: 1883617
num_examples: 587
- name: shard_10745
num_bytes: 1815089
num_examples: 506
- name: shard_1076
num_bytes: 1881592
num_examples: 567
- name: shard_10746
num_bytes: 2077697
num_examples: 569
- name: shard_10752
num_bytes: 1633548
num_examples: 480
- name: shard_10774
num_bytes: 1967064
num_examples: 525
- name: shard_10796
num_bytes: 3216389
num_examples: 1149
- name: shard_10741
num_bytes: 1741749
num_examples: 495
- name: shard_10771
num_bytes: 1431999
num_examples: 465
- name: shard_1081
num_bytes: 1902619
num_examples: 593
- name: shard_10691
num_bytes: 1615444
num_examples: 509
- name: shard_10781
num_bytes: 1758513
num_examples: 521
- name: shard_1072
num_bytes: 1666222
num_examples: 508
- name: shard_10789
num_bytes: 2290621
num_examples: 663
- name: shard_10824
num_bytes: 2303055
num_examples: 755
- name: shard_10720
num_bytes: 1521373
num_examples: 439
- name: shard_10699
num_bytes: 2219222
num_examples: 687
- name: shard_10809
num_bytes: 2491367
num_examples: 670
- name: shard_10868
num_bytes: 1502120
num_examples: 457
- name: shard_10860
num_bytes: 1598902
num_examples: 444
- name: shard_10756
num_bytes: 1741295
num_examples: 519
- name: shard_10875
num_bytes: 2376365
num_examples: 689
- name: shard_10628
num_bytes: 1590374
num_examples: 486
- name: shard_10759
num_bytes: 1968808
num_examples: 578
- name: shard_10784
num_bytes: 1980905
num_examples: 566
- name: shard_10712
num_bytes: 2114475
num_examples: 769
- name: shard_10734
num_bytes: 2503133
num_examples: 805
- name: shard_10846
num_bytes: 1390416
num_examples: 440
- name: shard_10705
num_bytes: 2401860
num_examples: 915
- name: shard_10831
num_bytes: 1444555
num_examples: 430
- name: shard_10778
num_bytes: 1798802
num_examples: 508
- name: shard_10882
num_bytes: 3060842
num_examples: 861
- name: shard_1089
num_bytes: 2117693
num_examples: 617
- name: shard_10897
num_bytes: 1800552
num_examples: 579
- name: shard_10853
num_bytes: 2401097
num_examples: 838
- name: shard_10463
num_bytes: 1953012
num_examples: 575
- name: shard_10815
num_bytes: 2002715
num_examples: 568
- name: shard_10763
num_bytes: 2020642
num_examples: 530
- name: shard_10797
num_bytes: 2748982
num_examples: 842
- name: shard_10918
num_bytes: 2450845
num_examples: 727
- name: shard_10910
num_bytes: 1797180
num_examples: 527
- name: shard_1065
num_bytes: 1683705
num_examples: 476
- name: shard_10474
num_bytes: 2879834
num_examples: 885
- name: shard_10932
num_bytes: 1565556
num_examples: 551
- name: shard_10770
num_bytes: 2959467
num_examples: 837
- name: shard_10840
num_bytes: 1508428
num_examples: 488
- name: shard_10821
num_bytes: 2731613
num_examples: 757
- name: shard_10925
num_bytes: 1745133
num_examples: 528
- name: shard_10660
num_bytes: 1743349
num_examples: 544
- name: shard_10947
num_bytes: 1676536
num_examples: 484
- name: shard_10866
num_bytes: 2890471
num_examples: 812
- name: shard_10872
num_bytes: 1577472
num_examples: 524
- name: shard_10879
num_bytes: 1872624
num_examples: 615
- name: shard_1094
num_bytes: 2318756
num_examples: 639
- name: shard_10983
num_bytes: 2303128
num_examples: 722
- name: shard_10929
num_bytes: 1707341
num_examples: 528
- name: shard_10857
num_bytes: 1610649
num_examples: 512
- name: shard_10485
num_bytes: 1242974
num_examples: 395
- name: shard_10969
num_bytes: 2438237
num_examples: 609
- name: shard_10976
num_bytes: 2679099
num_examples: 753
- name: shard_10990
num_bytes: 2114418
num_examples: 651
- name: shard_10885
num_bytes: 1644987
num_examples: 492
- name: shard_1085
num_bytes: 1778292
num_examples: 588
- name: shard_1048
num_bytes: 2360317
num_examples: 744
- name: shard_10922
num_bytes: 1937906
num_examples: 641
- name: shard_1091
num_bytes: 2080799
num_examples: 701
- name: shard_108
num_bytes: 1849042
num_examples: 553
- name: shard_10813
num_bytes: 2399853
num_examples: 736
- name: shard_10935
num_bytes: 3427617
num_examples: 848
- name: shard_10864
num_bytes: 2676369
num_examples: 731
- name: shard_11010
num_bytes: 1311128
num_examples: 452
- name: shard_10998
num_bytes: 1936638
num_examples: 516
- name: shard_11003
num_bytes: 3035444
num_examples: 850
- name: shard_10490
num_bytes: 2059200
num_examples: 636
- name: shard_10886
num_bytes: 1592390
num_examples: 462
- name: shard_10948
num_bytes: 2410338
num_examples: 766
- name: shard_11032
num_bytes: 2392294
num_examples: 661
- name: shard_1090
num_bytes: 1729394
num_examples: 518
- name: shard_10973
num_bytes: 1874095
num_examples: 543
- name: shard_10893
num_bytes: 2438998
num_examples: 752
- name: shard_10671
num_bytes: 2373850
num_examples: 581
- name: shard_10496
num_bytes: 2672925
num_examples: 772
- name: shard_10871
num_bytes: 2666803
num_examples: 744
- name: shard_10960
num_bytes: 2586483
num_examples: 789
- name: shard_10941
num_bytes: 2750219
num_examples: 937
- name: shard_11047
num_bytes: 1940080
num_examples: 545
- name: shard_11025
num_bytes: 1900405
num_examples: 569
- name: shard_10967
num_bytes: 4183264
num_examples: 996
- name: shard_10206
num_bytes: 3714862
num_examples: 891
- name: shard_11018
num_bytes: 3019471
num_examples: 871
- name: shard_10914
num_bytes: 1980877
num_examples: 552
- name: shard_10992
num_bytes: 1580255
num_examples: 484
- name: shard_10606
num_bytes: 2584262
num_examples: 640
- name: shard_10999
num_bytes: 1950388
num_examples: 551
- name: shard_10921
num_bytes: 2477762
num_examples: 743
- name: shard_10315
num_bytes: 2911312
num_examples: 743
- name: shard_10419
num_bytes: 2586408
num_examples: 667
- name: shard_11054
num_bytes: 2011864
num_examples: 594
- name: shard_10289
num_bytes: 3470407
num_examples: 963
- name: shard_10835
num_bytes: 3026775
num_examples: 806
- name: shard_10298
num_bytes: 2823620
num_examples: 791
- name: shard_10455
num_bytes: 3275368
num_examples: 750
- name: shard_10311
num_bytes: 4072154
num_examples: 1148
- name: shard_11090
num_bytes: 3270282
num_examples: 858
- name: shard_11035
num_bytes: 1447049
num_examples: 458
- name: shard_11022
num_bytes: 2185853
num_examples: 652
- name: shard_11111
num_bytes: 2068341
num_examples: 615
- name: shard_11119
num_bytes: 1970512
num_examples: 580
- name: shard_11126
num_bytes: 1703981
num_examples: 523
download_size: 314533805
dataset_size: 506056044
configs:
- config_name: default
data_files:
- split: train
path: data/*.parquet
- split: shard_10339
path: data/shard_10339-*
- split: shard_10400
path: data/shard_10400-*
- split: shard_10424
path: data/shard_10424-*
- split: shard_10324
path: data/shard_10324-*
- split: shard_10428
path: data/shard_10428-*
- split: shard_10258
path: data/shard_10258-*
- split: shard_10396
path: data/shard_10396-*
- split: shard_10411
path: data/shard_10411-*
- split: shard_10418
path: data/shard_10418-*
- split: shard_10206
path: data/shard_10206-*
- split: shard_10442
path: data/shard_10442-*
- split: shard_1045
path: data/shard_1045-*
- split: shard_10289
path: data/shard_10289-*
- split: shard_10298
path: data/shard_10298-*
- split: shard_10344
path: data/shard_10344-*
- split: shard_10435
path: data/shard_10435-*
- split: shard_10311
path: data/shard_10311-*
- split: shard_10405
path: data/shard_10405-*
- split: shard_10464
path: data/shard_10464-*
- split: shard_10457
path: data/shard_10457-*
- split: shard_10439
path: data/shard_10439-*
- split: shard_10351
path: data/shard_10351-*
- split: shard_10446
path: data/shard_10446-*
- split: shard_10315
path: data/shard_10315-*
- split: shard_10471
path: data/shard_10471-*
- split: shard_1035
path: data/shard_1035-*
- split: shard_10456
path: data/shard_10456-*
- split: shard_10486
path: data/shard_10486-*
- split: shard_10430
path: data/shard_10430-*
- split: shard_10469
path: data/shard_10469-*
- split: shard_10360
path: data/shard_10360-*
- split: shard_10443
path: data/shard_10443-*
- split: shard_10453
path: data/shard_10453-*
- split: shard_10462
path: data/shard_10462-*
- split: shard_10481
path: data/shard_10481-*
- split: shard_10482
path: data/shard_10482-*
- split: shard_10365
path: data/shard_10365-*
- split: shard_10475
path: data/shard_10475-*
- split: shard_10444
path: data/shard_10444-*
- split: shard_10493
path: data/shard_10493-*
- split: shard_10433
path: data/shard_10433-*
- split: shard_1037
path: data/shard_1037-*
- split: shard_1049
path: data/shard_1049-*
- split: shard_10507
path: data/shard_10507-*
- split: shard_10521
path: data/shard_10521-*
- split: shard_10479
path: data/shard_10479-*
- split: shard_10543
path: data/shard_10543-*
- split: shard_10494
path: data/shard_10494-*
- split: shard_10565
path: data/shard_10565-*
- split: shard_10558
path: data/shard_10558-*
- split: shard_10506
path: data/shard_10506-*
- split: shard_10497
path: data/shard_10497-*
- split: shard_10503
path: data/shard_10503-*
- split: shard_10488
path: data/shard_10488-*
- split: shard_1050
path: data/shard_1050-*
- split: shard_10379
path: data/shard_10379-*
- split: shard_10366
path: data/shard_10366-*
- split: shard_10512
path: data/shard_10512-*
- split: shard_10529
path: data/shard_10529-*
- split: shard_10477
path: data/shard_10477-*
- split: shard_10510
path: data/shard_10510-*
- split: shard_10518
path: data/shard_10518-*
- split: shard_10514
path: data/shard_10514-*
- split: shard_10383
path: data/shard_10383-*
- split: shard_10550
path: data/shard_10550-*
- split: shard_10525
path: data/shard_10525-*
- split: shard_10536
path: data/shard_10536-*
- split: shard_10531
path: data/shard_10531-*
- split: shard_10538
path: data/shard_10538-*
- split: shard_10532
path: data/shard_10532-*
- split: shard_10382
path: data/shard_10382-*
- split: shard_10509
path: data/shard_10509-*
- split: shard_10572
path: data/shard_10572-*
- split: shard_1058
path: data/shard_1058-*
- split: shard_10455
path: data/shard_10455-*
- split: shard_10594
path: data/shard_10594-*
- split: shard_10587
path: data/shard_10587-*
- split: shard_1054
path: data/shard_1054-*
- split: shard_10608
path: data/shard_10608-*
- split: shard_10554
path: data/shard_10554-*
- split: shard_10563
path: data/shard_10563-*
- split: shard_10600
path: data/shard_10600-*
- split: shard_10399
path: data/shard_10399-*
- split: shard_10409
path: data/shard_10409-*
- split: shard_10583
path: data/shard_10583-*
- split: shard_10397
path: data/shard_10397-*
- split: shard_10595
path: data/shard_10595-*
- split: shard_10414
path: data/shard_10414-*
- split: shard_10589
path: data/shard_10589-*
- split: shard_10622
path: data/shard_10622-*
- split: shard_1042
path: data/shard_1042-*
- split: shard_10613
path: data/shard_10613-*
- split: shard_1062
path: data/shard_1062-*
- split: shard_10626
path: data/shard_10626-*
- split: shard_10590
path: data/shard_10590-*
- split: shard_10659
path: data/shard_10659-*
- split: shard_10651
path: data/shard_10651-*
- split: shard_10607
path: data/shard_10607-*
- split: shard_10637
path: data/shard_10637-*
- split: shard_10552
path: data/shard_10552-*
- split: shard_10436
path: data/shard_10436-*
- split: shard_10645
path: data/shard_10645-*
- split: shard_10604
path: data/shard_10604-*
- split: shard_10632
path: data/shard_10632-*
- split: shard_10611
path: data/shard_10611-*
- split: shard_1063
path: data/shard_1063-*
- split: shard_10673
path: data/shard_10673-*
- split: shard_10419
path: data/shard_10419-*
- split: shard_10633
path: data/shard_10633-*
- split: shard_10670
path: data/shard_10670-*
- split: shard_10680
path: data/shard_10680-*
- split: shard_10639
path: data/shard_10639-*
- split: shard_10574
path: data/shard_10574-*
- split: shard_10658
path: data/shard_10658-*
- split: shard_10664
path: data/shard_10664-*
- split: shard_10640
path: data/shard_10640-*
- split: shard_10648
path: data/shard_10648-*
- split: shard_10688
path: data/shard_10688-*
- split: shard_10701
path: data/shard_10701-*
- split: shard_10677
path: data/shard_10677-*
- split: shard_10596
path: data/shard_10596-*
- split: shard_10441
path: data/shard_10441-*
- split: shard_10683
path: data/shard_10683-*
- split: shard_10684
path: data/shard_10684-*
- split: shard_10696
path: data/shard_10696-*
- split: shard_10606
path: data/shard_10606-*
- split: shard_10733
path: data/shard_10733-*
- split: shard_10691
path: data/shard_10691-*
- split: shard_10699
path: data/shard_10699-*
- split: shard_10716
path: data/shard_10716-*
- split: shard_10752
path: data/shard_10752-*
- split: shard_10447
path: data/shard_10447-*
- split: shard_1076
path: data/shard_1076-*
- split: shard_10727
path: data/shard_10727-*
- split: shard_10746
path: data/shard_10746-*
- split: shard_1074
path: data/shard_1074-*
- split: shard_10662
path: data/shard_10662-*
- split: shard_10714
path: data/shard_10714-*
- split: shard_10655
path: data/shard_10655-*
- split: shard_10767
path: data/shard_10767-*
- split: shard_10720
path: data/shard_10720-*
- split: shard_10745
path: data/shard_10745-*
- split: shard_1072
path: data/shard_1072-*
- split: shard_10774
path: data/shard_10774-*
- split: shard_10781
path: data/shard_10781-*
- split: shard_10789
path: data/shard_10789-*
- split: shard_10796
path: data/shard_10796-*
- split: shard_10778
path: data/shard_10778-*
- split: shard_10734
path: data/shard_10734-*
- split: shard_10741
path: data/shard_10741-*
- split: shard_10771
path: data/shard_10771-*
- split: shard_1081
path: data/shard_1081-*
- split: shard_10831
path: data/shard_10831-*
- split: shard_10705
path: data/shard_10705-*
- split: shard_10784
path: data/shard_10784-*
- split: shard_10846
path: data/shard_10846-*
- split: shard_10824
path: data/shard_10824-*
- split: shard_10809
path: data/shard_10809-*
- split: shard_10756
path: data/shard_10756-*
- split: shard_10853
path: data/shard_10853-*
- split: shard_10797
path: data/shard_10797-*
- split: shard_10868
path: data/shard_10868-*
- split: shard_10815
path: data/shard_10815-*
- split: shard_10860
path: data/shard_10860-*
- split: shard_10763
path: data/shard_10763-*
- split: shard_10875
path: data/shard_10875-*
- split: shard_10759
path: data/shard_10759-*
- split: shard_10628
path: data/shard_10628-*
- split: shard_10712
path: data/shard_10712-*
- split: shard_10882
path: data/shard_10882-*
- split: shard_1089
path: data/shard_1089-*
- split: shard_10897
path: data/shard_10897-*
- split: shard_10463
path: data/shard_10463-*
- split: shard_10918
path: data/shard_10918-*
- split: shard_10840
path: data/shard_10840-*
- split: shard_10932
path: data/shard_10932-*
- split: shard_10910
path: data/shard_10910-*
- split: shard_1065
path: data/shard_1065-*
- split: shard_10474
path: data/shard_10474-*
- split: shard_10770
path: data/shard_10770-*
- split: shard_10821
path: data/shard_10821-*
- split: shard_10925
path: data/shard_10925-*
- split: shard_1094
path: data/shard_1094-*
- split: shard_10660
path: data/shard_10660-*
- split: shard_10947
path: data/shard_10947-*
- split: shard_10866
path: data/shard_10866-*
- split: shard_10872
path: data/shard_10872-*
- split: shard_10879
path: data/shard_10879-*
- split: shard_10671
path: data/shard_10671-*
- split: shard_1091
path: data/shard_1091-*
- split: shard_10983
path: data/shard_10983-*
- split: shard_10929
path: data/shard_10929-*
- split: shard_10857
path: data/shard_10857-*
- split: shard_10485
path: data/shard_10485-*
- split: shard_10969
path: data/shard_10969-*
- split: shard_10976
path: data/shard_10976-*
- split: shard_10935
path: data/shard_10935-*
- split: shard_10948
path: data/shard_10948-*
- split: shard_10990
path: data/shard_10990-*
- split: shard_10998
path: data/shard_10998-*
- split: shard_10885
path: data/shard_10885-*
- split: shard_1085
path: data/shard_1085-*
- split: shard_10922
path: data/shard_10922-*
- split: shard_1048
path: data/shard_1048-*
- split: shard_108
path: data/shard_108-*
- split: shard_10813
path: data/shard_10813-*
- split: shard_10864
path: data/shard_10864-*
- split: shard_11010
path: data/shard_11010-*
- split: shard_11003
path: data/shard_11003-*
- split: shard_11018
path: data/shard_11018-*
- split: shard_11025
path: data/shard_11025-*
- split: shard_10490
path: data/shard_10490-*
- split: shard_10886
path: data/shard_10886-*
- split: shard_11032
path: data/shard_11032-*
- split: shard_1090
path: data/shard_1090-*
- split: shard_10973
path: data/shard_10973-*
- split: shard_10893
path: data/shard_10893-*
- split: shard_10496
path: data/shard_10496-*
- split: shard_10871
path: data/shard_10871-*
- split: shard_10960
path: data/shard_10960-*
- split: shard_10941
path: data/shard_10941-*
- split: shard_11047
path: data/shard_11047-*
- split: shard_10967
path: data/shard_10967-*
- split: shard_10835
path: data/shard_10835-*
- split: shard_10914
path: data/shard_10914-*
- split: shard_10992
path: data/shard_10992-*
- split: shard_10999
path: data/shard_10999-*
- split: shard_10921
path: data/shard_10921-*
- split: shard_11054
path: data/shard_11054-*
- split: shard_11090
path: data/shard_11090-*
- split: shard_11035
path: data/shard_11035-*
- split: shard_11022
path: data/shard_11022-*
- split: shard_11111
path: data/shard_11111-*
- split: shard_11119
path: data/shard_11119-*
- split: shard_11126
path: data/shard_11126-*
---
![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)
# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.
- **Please note the current version is a PREVIEW version. We are still in the process of uploading. Please be patient.**
## Features
- Audio-Video-Text Format:
A combination of:
```
<video>
<caption><image> the caption </caption>
<caption><image> the caption </caption>
<caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
```
- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds, a data record may span over more than 10 secs (e.g., if a data item has two 10 second videos, then the corresponding English text corresponds roughly to 20 seconds of video).
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion.
- Data Components:
- **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2.
- **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English.
- **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.
- Dataset Size:
- **About 7,000,000 records.**
- **About 15,000,000 images, each captioned with FLorence-2.**
- **About 30,000,000 audio snippets, about half of which transcribed with Whisper-large, and half with Youtube ASR.**
- **Divided into about 12K shards of about 600 records, each in a parquet file and a corresponding .tar.gz file for the media.**
- **About 14TB in total.**
## File Organization
- Each data entry follows the `<video><image(s)><audio><text>` structure as described above.
- Metadata includes alignment between modalities, and implicit ordering of audio/visual elements.
## Multimodal Details
- **Audio-Video Alignment**: Snippets allow learning temporal relationships between audio and visual elements.
- **Text Annotations**: Text descriptions, including captions and Youtube ASR English translations, provide linguistic alignment.
## Preprocessing
- **Phashing for Images**: Ensures that images within the dataset are dynamic and non-static.
- **Audio Snippet Lengths**: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns under fair use principles.
------
## Licenses
All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the audio snippets of these videos and select image frames here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content.
This dataset has only been lightly filtered for safety by removing data records with high proportions of children related words AND high proportions of sexual or violence related words. Moreover, we disclaim all warranties, whether express or implied and all laibilities with respect to infringment, fitness for a particular puprpose, or otherwise.
## Intended Uses
- **Primary Use Case**: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP, CLAP).
- **Not Recommended For**: Generation tasks, as the dataset's quality may not meet generative model requirements.
## Dataset Limitations
- **Quality**: Images and audio are sourced from YouTube and may vary in resolution and clarity.
- **Rights Uncertainty**: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
- **Biases**: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias.
## Ethical Considerations
The dataset was built under the principles of fair use and CC-BY licensing. Its creation strives to align with the spirit of the EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.
------
## Policy for Managing Video Deletion Requests
Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.
- **1. Respecting Content Owners' Rights:**
All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license.
If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.
- **2. Deletion Request Process:**
- Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: [Here](https://support.google.com/youtube/answer/2807622?) and [Here](https://support.google.com/youtube/answer/2801895?hl=en).
- Then the onwers or users should verify that it has been removed from YouTube and provide this fact in a feedback to us [Here](https://forms.gle/f4zYzZpJU78SBPho9).
- Requests must demonstrate that the video is no longer publicly available on YouTube.
- We will remove the videos confirmed to be deleted in the next release of this dataset.
- **3. Verification and Balancing Interests:**
All deletion requests will be verified by checking YouTube to ensure the video is no longer available.
We may also remove a video in our sole discretion. Decisions on video removal will take into account:
- The rights and wishes of content owners, including their ability to remove their videos from public availability.
- The community's need for robust datasets for training and research.
- The spirit of the CC-BY license, which permits redistribution and use with proper attribution.
- **4. Responsibilities for Derivative Datasets:**
Users creating derivative datasets must ensure compliance by deleting videos listed in `delete_these_videos.json`.
- **5. Proactive Deletion:**
Videos may be removed proactively under the following circumstances:
- Requests from the hosting provider (e.g., Hugging Face).
- Legal requirements or enforcement actions.
- Internal decisions.
- **6. Community Considerations:**
- The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.
- Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.
- **7. Updates:**
Users are encouraged to check the `delete_these_videos.json`, from time to time to ensure their copy of the dataset is up to date.
------
## Related Materials:
- If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ [YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
- Also, Huggingface has created an excellent CC-BY Youtube video dataset here: [Finevideo](https://huggingface.co/datasets/HuggingFaceFV/finevideo)
- LAION is also building a dataset [Here](https://huggingface.co/datasets/laion/laion-audio-preview) which includes Youtube audio snippets paired with Gemini generated captions.
## Acknowledgement and Thanks
This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of our SafeLLM/Aurora-M2 project in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank Huggingface and the open source community for their support.
## About the Contributors:
- [**Grass**](https://www.getgrass.io/) is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io
- [**LAION**](https://www.laion.ai), is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.
- [**Ontocord**](https://www.ontocord.ai/ ) is dedicated to making legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.
- [**Alignment Lab AI**](https://x.com/alignment_lab): Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives. We believe everyone deserves to harness the power of personal intelligence.
- And many others ...
## Citation
```
@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}
```
|