Datasets:

License:
File size: 38,863 Bytes
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d29632
 
 
 
3e17de3
 
 
d2635d1
 
 
71cf6cc
 
 
732d683
 
 
b4a76e4
 
 
646d44f
 
 
b6eafbc
 
 
df4eaeb
 
 
c2e2caf
 
 
4ad24da
 
 
52974d4
 
 
eb40eea
 
 
d755d1c
 
 
e026d9b
 
 
df5527b
 
 
b188f00
 
 
7127605
 
 
4c156ff
 
 
4e6c9d8
 
 
0436e29
 
 
abbbc7e
 
 
f4f5efb
 
 
75fb012
 
 
a9a5108
 
 
6a0612c
 
 
8ec0393
 
 
f02da63
 
 
ccd8e8e
 
 
6eb6168
 
 
ab1f5a9
 
 
46d4d65
 
 
8de4ce6
 
 
91a6a97
 
 
3768c07
 
 
1e69254
 
 
dbabdc7
 
 
3560b42
 
 
4980345
 
 
1830ca4
 
 
c10f941
 
 
57d1da1
 
 
52cd770
 
 
ff79bed
 
 
0b5f126
 
 
03f9572
 
 
cd3ab53
 
 
af0ebac
 
 
188bba3
 
 
fffef3a
 
 
a0c3015
 
 
0980505
 
 
9c3e953
 
 
69c4120
 
 
c3e6d7e
 
 
36ca13d
 
 
1afec7a
 
 
740d72b
 
 
254327a
 
 
59431e2
 
 
49b55ee
 
 
e3f2e8c
 
 
b436b81
 
 
a246c7c
 
 
6224742
 
 
53d457b
 
 
9f3cec6
 
 
b3b2622
 
 
458af59
 
 
4371856
 
 
9e32922
 
 
6ba0cdf
 
 
7cfe4cb
 
 
671896b
 
 
ce7df14
 
 
deba069
 
 
78a2426
 
 
2bf52c8
 
 
b3ab64f
 
 
f1aa78e
 
 
24baf2e
 
 
21bb455
 
 
12f3b18
 
 
a0a0dce
 
 
1be8670
 
 
bf64198
 
 
dd1be5d
 
 
011d757
 
 
abb3d1c
 
 
c05e91e
 
 
592ba51
 
 
a622128
 
 
14e84ba
 
 
a48d140
 
 
bb3281d
 
 
e35da6d
 
 
7ff808e
 
 
57da305
 
 
e530a6e
 
 
5b73d8b
 
 
816e2f9
 
 
bd26e45
 
 
3d19c50
 
 
e6ff128
 
 
07821e5
 
 
e690b8b
 
 
e5ea027
 
 
cb42524
 
 
683276a
 
 
183d686
 
 
1863f61
 
 
d398e50
 
 
ef62e25
 
 
2c7ab47
 
 
1960a97
 
 
81afb7b
 
 
b310da7
 
 
a40c4e6
 
 
efb4c43
 
 
1bc8269
 
 
e0c02d6
 
 
bfcda3f
 
 
a703351
 
 
07e3432
 
 
f577657
 
 
c8f86db
 
 
f0c01e1
 
 
312f8b5
 
 
67645eb
 
 
c59f4dc
 
 
e20e7b7
 
 
cfdd48a
 
 
8353165
 
 
a3f85a4
 
 
f065f51
 
 
3892eea
 
 
53ac037
 
 
ad02a89
 
 
2d1e55e
 
 
8353165
 
 
528192a
 
 
162b2a9
 
 
fa45834
 
 
0c58d15
 
 
4abe9de
 
 
7292e4d
 
 
102a4b5
 
 
bd7e589
 
 
9ac0cc9
 
 
e6294b0
 
 
454feda
 
 
83a1e3a
 
 
0e670bb
 
 
2204142
 
 
cc632d2
 
 
 
 
 
41ed169
 
 
578df49
 
 
b88cdef
 
 
74992ea
 
 
0a595a4
 
 
247f6b9
 
 
e604af4
 
 
0c58d15
 
 
7426ddb
 
 
02ad120
 
 
a87efc1
 
 
8dd2e0c
 
 
a8debe1
 
 
33699cc
 
 
c88610a
 
 
29d2081
 
 
456a0da
 
 
c60e7c4
 
 
 
 
 
3a13ddf
 
 
ae027dc
 
 
d3324c2
 
 
0702874
 
 
fcdc4a7
 
 
d92fc10
 
 
ca17d37
 
 
e37cc92
 
 
58e79ed
 
 
704fb0a
 
 
8922020
 
 
86e2349
 
 
5e3707e
 
 
f06a2b5
 
 
34578cf
 
 
4b8d52f
 
 
f6d4ebc
 
 
c5ea695
 
 
9219b52
 
 
1d01353
 
 
1a82db3
 
 
118acac
 
 
80325e8
 
 
29b4432
 
 
33bc19b
 
 
75fa665
 
 
03dc9fe
 
 
5fba410
 
 
b304ebf
 
 
aa5d29c
 
 
39d23c7
 
 
0f53809
 
 
bd8159a
 
 
4dd7f43
 
 
0cdc808
 
 
0daa96f
 
 
467647d
 
 
24b1b93
 
 
5a4c002
 
 
4f91219
 
 
e16d6a8
 
 
d9d3501
 
 
aa257a2
 
 
f985760
 
 
4d4f2b1
 
 
4db6066
 
 
aa257a2
 
 
4f91219
 
 
b66b488
 
 
d76c0a5
 
 
7bc9083
 
 
9ca1b3f
 
 
aa9bc45
 
 
3dcb1ab
 
 
2b10bd6
 
 
dcd3bce
 
 
1cc8423
 
 
b6361af
 
 
de2f31b
 
 
d4aca4e
 
 
 
 
faa4dea
 
 
443ddf1
8a83f7a
2d29632
 
3e17de3
 
5d0e777
 
d2635d1
 
8ab7be2
 
972c8ce
 
f3b6b53
 
a213fb8
 
71cf6cc
 
4aaa225
 
89b24c2
 
732d683
 
36336ef
 
c1c5b74
 
bcbdf69
 
646d44f
 
28aee33
 
ce7ec2a
 
aecfa6c
 
99f19fb
 
52974d4
 
eb40eea
 
d755d1c
 
92fcac4
 
7127605
 
0d19ecd
 
4c156ff
 
aca10ec
 
0436e29
 
abbbc7e
 
f4f5efb
 
75fb012
 
a9a5108
 
9aadb65
 
6a0612c
 
8ec0393
 
f02da63
 
ccd8e8e
 
6eb6168
 
ab1f5a9
 
46d4d65
 
91a6a97
 
3768c07
 
763867f
 
028adf3
 
dbabdc7
 
3560b42
 
4980345
 
2b47f95
 
b2534bc
 
1830ca4
 
c10f941
 
57d1da1
 
52cd770
 
ff79bed
 
0b5f126
 
dca2d9c
 
41a1871
 
d8ab4ac
 
af0ebac
 
188bba3
 
fffef3a
 
a0c3015
 
36ca13d
 
1afec7a
 
8d64994
 
c9570d9
 
a492105
 
49b55ee
 
e3f2e8c
 
a246c7c
 
c1d6003
 
5c71a7c
 
6224742
 
7f3ecb2
 
9f3cec6
 
df5f3c6
 
458af59
 
9e32922
 
6ba0cdf
 
cd3168b
 
7cfe4cb
 
ce7df14
 
deba069
 
2bf52c8
 
b3ab64f
 
f1aa78e
 
24baf2e
 
b7fa2d4
 
21bb455
 
43f81a6
 
ae71acd
 
1748850
 
20f998a
 
12f3b18
 
6e8c673
 
a1d0276
 
dd1be5d
 
c05e91e
 
14e84ba
 
a48d140
 
bb3281d
 
e35da6d
 
7ff808e
 
57da305
 
a5dfafb
 
8a341d2
 
5bf3653
 
76a8e3c
 
47d2ef3
 
e530a6e
 
e6ff128
 
07821e5
 
e690b8b
 
e5ea027
 
cb42524
 
683276a
 
efa72a0
 
183d686
 
1863f61
 
2c7ab47
 
1960a97
 
81afb7b
 
b310da7
 
a40c4e6
 
3067fcc
 
efb4c43
 
54625c8
 
311326a
 
1bc8269
 
302e4e6
 
e0c02d6
 
b121203
 
bfcda3f
 
25ba0bb
 
a703351
 
07e3432
 
f577657
 
c8f86db
 
f0c01e1
 
561780e
 
312f8b5
 
3899915
 
cfdd48a
 
8f53384
 
a7e7dd7
 
65c5d6d
 
d9ff462
 
a7247b2
 
e8043f6
 
f065f51
 
3892eea
 
586df7a
 
28aa26b
 
955a634
 
2769421
 
528192a
 
653cc59
 
5360343
 
48c35fd
 
a63e1e9
 
4abe9de
 
b8a8cc1
 
7292e4d
 
3a54cfe
 
bd7e589
 
dc82eab
 
9ac0cc9
 
83a1e3a
 
578df49
 
b88cdef
 
74992ea
 
247f6b9
 
02ad120
 
d519d13
 
1d3a22a
 
b846d06
 
8dd2e0c
 
a8debe1
 
c88610a
 
456a0da
 
a87efc1
 
83fc87a
 
c60e7c4
 
3a13ddf
 
ae027dc
 
d3324c2
 
0702874
 
57e2e87
 
ab18a2f
 
d92fc10
 
ca17d37
 
e37cc92
 
58e79ed
 
704fb0a
 
8922020
 
a5c5951
 
edc0553
 
86e2349
 
2304a00
 
5e3707e
 
f06a2b5
 
9e5cb68
 
34578cf
 
c5ea695
 
9219b52
 
1a82db3
 
118acac
 
29b4432
 
c45a232
 
9876082
 
33bc19b
 
75fa665
 
5fba410
 
b304ebf
 
aa5d29c
 
39d23c7
 
bd8159a
 
4dd7f43
 
0cdc808
 
0daa96f
 
467647d
 
5a4c002
 
65333e2
 
d9d3501
 
af36bd4
 
4d4f2b1
 
4db6066
 
b66b488
 
2b10bd6
 
dcd3bce
 
1cc8423
 
b6361af
 
de2f31b
 
d4aca4e
 
faa4dea
 
 
 
 
 
c07ad24
faa4dea
0a625e8
 
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
ed00af0
faa4dea
 
 
 
 
 
 
 
a41d02e
 
 
 
15fabab
faa4dea
 
 
04c7c99
faa4dea
 
 
17f5901
faa4dea
 
 
17f5901
faa4dea
 
 
 
17f5901
509425d
faa4dea
 
 
fd3d68e
faa4dea
 
 
 
 
 
 
 
 
cfbf644
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
2e7225b
faa4dea
2e7225b
faa4dea
 
 
 
2e7225b
 
 
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d6d68
 
 
faa4dea
 
 
cf301f6
faa4dea
 
 
 
 
bcc7671
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
cf301f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
---
license: cc-by-sa-4.0
dataset_info:
  features:
  - name: video_id
    dtype: string
  - name: chunk_idx
    dtype: int64
  - name: chunk_text
    dtype: string
  - name: video_metadata
    dtype: string
  - name: video_language
    dtype: string
  - name: chunk_media
    dtype: string
  splits:
  - name: shard_10339
    num_bytes: 1997009
    num_examples: 631
  - name: shard_10400
    num_bytes: 2638827
    num_examples: 722
  - name: shard_10324
    num_bytes: 1700655
    num_examples: 515
  - name: shard_10418
    num_bytes: 3034319
    num_examples: 947
  - name: shard_1045
    num_bytes: 2042334
    num_examples: 648
  - name: shard_10428
    num_bytes: 2314345
    num_examples: 706
  - name: shard_10435
    num_bytes: 2300183
    num_examples: 677
  - name: shard_10424
    num_bytes: 1839226
    num_examples: 552
  - name: shard_10442
    num_bytes: 1543285
    num_examples: 419
  - name: shard_10411
    num_bytes: 2005599
    num_examples: 604
  - name: shard_10344
    num_bytes: 1796239
    num_examples: 589
  - name: shard_10439
    num_bytes: 1780546
    num_examples: 567
  - name: shard_10351
    num_bytes: 2156111
    num_examples: 677
  - name: shard_10446
    num_bytes: 2117151
    num_examples: 525
  - name: shard_10457
    num_bytes: 1851306
    num_examples: 555
  - name: shard_10464
    num_bytes: 1316832
    num_examples: 440
  - name: shard_10405
    num_bytes: 1820556
    num_examples: 613
  - name: shard_10471
    num_bytes: 2397197
    num_examples: 682
  - name: shard_10456
    num_bytes: 1279577
    num_examples: 430
  - name: shard_1035
    num_bytes: 2102014
    num_examples: 687
  - name: shard_10430
    num_bytes: 2293697
    num_examples: 686
  - name: shard_10469
    num_bytes: 2521584
    num_examples: 743
  - name: shard_10360
    num_bytes: 2329044
    num_examples: 680
  - name: shard_10443
    num_bytes: 2222280
    num_examples: 641
  - name: shard_10453
    num_bytes: 3277011
    num_examples: 931
  - name: shard_10481
    num_bytes: 2163505
    num_examples: 709
  - name: shard_10482
    num_bytes: 1885620
    num_examples: 503
  - name: shard_10365
    num_bytes: 1789825
    num_examples: 453
  - name: shard_10475
    num_bytes: 2290432
    num_examples: 635
  - name: shard_10444
    num_bytes: 1915386
    num_examples: 550
  - name: shard_10493
    num_bytes: 2240928
    num_examples: 752
  - name: shard_10433
    num_bytes: 1728758
    num_examples: 554
  - name: shard_10486
    num_bytes: 1946726
    num_examples: 564
  - name: shard_1037
    num_bytes: 1622214
    num_examples: 464
  - name: shard_1049
    num_bytes: 2142677
    num_examples: 691
  - name: shard_10507
    num_bytes: 1404701
    num_examples: 444
  - name: shard_10479
    num_bytes: 2668644
    num_examples: 706
  - name: shard_10543
    num_bytes: 1567113
    num_examples: 498
  - name: shard_10494
    num_bytes: 2572169
    num_examples: 834
  - name: shard_10506
    num_bytes: 2352799
    num_examples: 689
  - name: shard_10497
    num_bytes: 2130672
    num_examples: 640
  - name: shard_10503
    num_bytes: 2821589
    num_examples: 657
  - name: shard_10488
    num_bytes: 2610372
    num_examples: 824
  - name: shard_1050
    num_bytes: 2380295
    num_examples: 610
  - name: shard_10379
    num_bytes: 2121338
    num_examples: 596
  - name: shard_10258
    num_bytes: 2899614
    num_examples: 881
  - name: shard_10521
    num_bytes: 1751228
    num_examples: 578
  - name: shard_10477
    num_bytes: 1987455
    num_examples: 610
  - name: shard_10510
    num_bytes: 1809438
    num_examples: 536
  - name: shard_10518
    num_bytes: 1554268
    num_examples: 534
  - name: shard_10514
    num_bytes: 2398872
    num_examples: 659
  - name: shard_10366
    num_bytes: 2686341
    num_examples: 715
  - name: shard_10462
    num_bytes: 3202984
    num_examples: 912
  - name: shard_10512
    num_bytes: 2058849
    num_examples: 697
  - name: shard_10558
    num_bytes: 2065125
    num_examples: 572
  - name: shard_10383
    num_bytes: 2580580
    num_examples: 859
  - name: shard_10550
    num_bytes: 2617491
    num_examples: 643
  - name: shard_10536
    num_bytes: 2352902
    num_examples: 649
  - name: shard_10529
    num_bytes: 1970611
    num_examples: 633
  - name: shard_10565
    num_bytes: 1569669
    num_examples: 522
  - name: shard_10538
    num_bytes: 2012923
    num_examples: 564
  - name: shard_10532
    num_bytes: 1839647
    num_examples: 594
  - name: shard_10531
    num_bytes: 2125990
    num_examples: 618
  - name: shard_10382
    num_bytes: 1770026
    num_examples: 493
  - name: shard_1058
    num_bytes: 1707150
    num_examples: 491
  - name: shard_10525
    num_bytes: 3210740
    num_examples: 892
  - name: shard_10594
    num_bytes: 1369358
    num_examples: 458
  - name: shard_10572
    num_bytes: 1859423
    num_examples: 489
  - name: shard_1054
    num_bytes: 2011157
    num_examples: 601
  - name: shard_10396
    num_bytes: 3458836
    num_examples: 956
  - name: shard_10608
    num_bytes: 2063015
    num_examples: 625
  - name: shard_10554
    num_bytes: 2017977
    num_examples: 529
  - name: shard_10600
    num_bytes: 1895994
    num_examples: 568
  - name: shard_10509
    num_bytes: 1324378
    num_examples: 402
  - name: shard_10399
    num_bytes: 2104822
    num_examples: 713
  - name: shard_10409
    num_bytes: 1595466
    num_examples: 476
  - name: shard_10563
    num_bytes: 2209694
    num_examples: 792
  - name: shard_10583
    num_bytes: 2328975
    num_examples: 681
  - name: shard_10397
    num_bytes: 1736501
    num_examples: 585
  - name: shard_10595
    num_bytes: 2393314
    num_examples: 705
  - name: shard_10414
    num_bytes: 1946475
    num_examples: 625
  - name: shard_10622
    num_bytes: 2213391
    num_examples: 641
  - name: shard_10590
    num_bytes: 2321541
    num_examples: 778
  - name: shard_1042
    num_bytes: 1894737
    num_examples: 584
  - name: shard_10613
    num_bytes: 2204566
    num_examples: 656
  - name: shard_1062
    num_bytes: 2548349
    num_examples: 795
  - name: shard_10607
    num_bytes: 2501284
    num_examples: 706
  - name: shard_10587
    num_bytes: 3077388
    num_examples: 876
  - name: shard_10589
    num_bytes: 1711464
    num_examples: 519
  - name: shard_10637
    num_bytes: 2165818
    num_examples: 687
  - name: shard_10659
    num_bytes: 1797910
    num_examples: 617
  - name: shard_10626
    num_bytes: 1543683
    num_examples: 469
  - name: shard_10552
    num_bytes: 1997256
    num_examples: 581
  - name: shard_10436
    num_bytes: 1948404
    num_examples: 648
  - name: shard_10645
    num_bytes: 1932871
    num_examples: 599
  - name: shard_10604
    num_bytes: 2224582
    num_examples: 580
  - name: shard_10632
    num_bytes: 3291451
    num_examples: 839
  - name: shard_10611
    num_bytes: 2496793
    num_examples: 744
  - name: shard_10673
    num_bytes: 2019733
    num_examples: 571
  - name: shard_10651
    num_bytes: 2494834
    num_examples: 814
  - name: shard_1063
    num_bytes: 2285316
    num_examples: 567
  - name: shard_10670
    num_bytes: 1678940
    num_examples: 520
  - name: shard_10633
    num_bytes: 1144822
    num_examples: 317
  - name: shard_10639
    num_bytes: 1980963
    num_examples: 591
  - name: shard_10574
    num_bytes: 2322077
    num_examples: 650
  - name: shard_10658
    num_bytes: 2610634
    num_examples: 804
  - name: shard_10664
    num_bytes: 2138512
    num_examples: 664
  - name: shard_10640
    num_bytes: 2138491
    num_examples: 632
  - name: shard_10648
    num_bytes: 2334731
    num_examples: 637
  - name: shard_10701
    num_bytes: 2025707
    num_examples: 644
  - name: shard_10677
    num_bytes: 1719218
    num_examples: 559
  - name: shard_10688
    num_bytes: 1998554
    num_examples: 607
  - name: shard_10680
    num_bytes: 1800096
    num_examples: 546
  - name: shard_10596
    num_bytes: 1541386
    num_examples: 471
  - name: shard_10441
    num_bytes: 1993580
    num_examples: 597
  - name: shard_10683
    num_bytes: 2145354
    num_examples: 638
  - name: shard_10684
    num_bytes: 2049918
    num_examples: 600
  - name: shard_10696
    num_bytes: 2556611
    num_examples: 704
  - name: shard_10733
    num_bytes: 1506424
    num_examples: 562
  - name: shard_10716
    num_bytes: 1373410
    num_examples: 382
  - name: shard_10447
    num_bytes: 1789843
    num_examples: 552
  - name: shard_10727
    num_bytes: 1704350
    num_examples: 542
  - name: shard_1074
    num_bytes: 2202555
    num_examples: 627
  - name: shard_10662
    num_bytes: 2446389
    num_examples: 678
  - name: shard_10714
    num_bytes: 2864249
    num_examples: 997
  - name: shard_10655
    num_bytes: 2225408
    num_examples: 664
  - name: shard_10767
    num_bytes: 1883617
    num_examples: 587
  - name: shard_10745
    num_bytes: 1815089
    num_examples: 506
  - name: shard_1076
    num_bytes: 1881592
    num_examples: 567
  - name: shard_10746
    num_bytes: 2077697
    num_examples: 569
  - name: shard_10752
    num_bytes: 1633548
    num_examples: 480
  - name: shard_10774
    num_bytes: 1967064
    num_examples: 525
  - name: shard_10796
    num_bytes: 3216389
    num_examples: 1149
  - name: shard_10741
    num_bytes: 1741749
    num_examples: 495
  - name: shard_10771
    num_bytes: 1431999
    num_examples: 465
  - name: shard_1081
    num_bytes: 1902619
    num_examples: 593
  - name: shard_10691
    num_bytes: 1615444
    num_examples: 509
  - name: shard_10781
    num_bytes: 1758513
    num_examples: 521
  - name: shard_1072
    num_bytes: 1666222
    num_examples: 508
  - name: shard_10789
    num_bytes: 2290621
    num_examples: 663
  - name: shard_10824
    num_bytes: 2303055
    num_examples: 755
  - name: shard_10720
    num_bytes: 1521373
    num_examples: 439
  - name: shard_10699
    num_bytes: 2219222
    num_examples: 687
  - name: shard_10809
    num_bytes: 2491367
    num_examples: 670
  - name: shard_10868
    num_bytes: 1502120
    num_examples: 457
  - name: shard_10860
    num_bytes: 1598902
    num_examples: 444
  - name: shard_10756
    num_bytes: 1741295
    num_examples: 519
  - name: shard_10875
    num_bytes: 2376365
    num_examples: 689
  - name: shard_10628
    num_bytes: 1590374
    num_examples: 486
  - name: shard_10759
    num_bytes: 1968808
    num_examples: 578
  - name: shard_10784
    num_bytes: 1980905
    num_examples: 566
  - name: shard_10712
    num_bytes: 2114475
    num_examples: 769
  - name: shard_10734
    num_bytes: 2503133
    num_examples: 805
  - name: shard_10846
    num_bytes: 1390416
    num_examples: 440
  - name: shard_10705
    num_bytes: 2401860
    num_examples: 915
  - name: shard_10831
    num_bytes: 1444555
    num_examples: 430
  - name: shard_10778
    num_bytes: 1798802
    num_examples: 508
  - name: shard_10882
    num_bytes: 3060842
    num_examples: 861
  - name: shard_1089
    num_bytes: 2117693
    num_examples: 617
  - name: shard_10897
    num_bytes: 1800552
    num_examples: 579
  - name: shard_10853
    num_bytes: 2401097
    num_examples: 838
  - name: shard_10463
    num_bytes: 1953012
    num_examples: 575
  - name: shard_10815
    num_bytes: 2002715
    num_examples: 568
  - name: shard_10763
    num_bytes: 2020642
    num_examples: 530
  - name: shard_10797
    num_bytes: 2748982
    num_examples: 842
  - name: shard_10918
    num_bytes: 2450845
    num_examples: 727
  - name: shard_10910
    num_bytes: 1797180
    num_examples: 527
  - name: shard_1065
    num_bytes: 1683705
    num_examples: 476
  - name: shard_10474
    num_bytes: 2879834
    num_examples: 885
  - name: shard_10932
    num_bytes: 1565556
    num_examples: 551
  - name: shard_10770
    num_bytes: 2959467
    num_examples: 837
  - name: shard_10840
    num_bytes: 1508428
    num_examples: 488
  - name: shard_10821
    num_bytes: 2731613
    num_examples: 757
  - name: shard_10925
    num_bytes: 1745133
    num_examples: 528
  - name: shard_10660
    num_bytes: 1743349
    num_examples: 544
  - name: shard_10947
    num_bytes: 1676536
    num_examples: 484
  - name: shard_10866
    num_bytes: 2890471
    num_examples: 812
  - name: shard_10872
    num_bytes: 1577472
    num_examples: 524
  - name: shard_10879
    num_bytes: 1872624
    num_examples: 615
  - name: shard_1094
    num_bytes: 2318756
    num_examples: 639
  - name: shard_10983
    num_bytes: 2303128
    num_examples: 722
  - name: shard_10929
    num_bytes: 1707341
    num_examples: 528
  - name: shard_10857
    num_bytes: 1610649
    num_examples: 512
  - name: shard_10485
    num_bytes: 1242974
    num_examples: 395
  - name: shard_10969
    num_bytes: 2438237
    num_examples: 609
  - name: shard_10976
    num_bytes: 2679099
    num_examples: 753
  - name: shard_10990
    num_bytes: 2114418
    num_examples: 651
  - name: shard_10885
    num_bytes: 1644987
    num_examples: 492
  - name: shard_1085
    num_bytes: 1778292
    num_examples: 588
  - name: shard_1048
    num_bytes: 2360317
    num_examples: 744
  - name: shard_10922
    num_bytes: 1937906
    num_examples: 641
  - name: shard_1091
    num_bytes: 2080799
    num_examples: 701
  - name: shard_108
    num_bytes: 1849042
    num_examples: 553
  - name: shard_10813
    num_bytes: 2399853
    num_examples: 736
  - name: shard_10935
    num_bytes: 3427617
    num_examples: 848
  - name: shard_10864
    num_bytes: 2676369
    num_examples: 731
  - name: shard_11010
    num_bytes: 1311128
    num_examples: 452
  - name: shard_10998
    num_bytes: 1936638
    num_examples: 516
  - name: shard_11003
    num_bytes: 3035444
    num_examples: 850
  - name: shard_10490
    num_bytes: 2059200
    num_examples: 636
  - name: shard_10886
    num_bytes: 1592390
    num_examples: 462
  - name: shard_10948
    num_bytes: 2410338
    num_examples: 766
  - name: shard_11032
    num_bytes: 2392294
    num_examples: 661
  - name: shard_1090
    num_bytes: 1729394
    num_examples: 518
  - name: shard_10973
    num_bytes: 1874095
    num_examples: 543
  - name: shard_10893
    num_bytes: 2438998
    num_examples: 752
  - name: shard_10671
    num_bytes: 2373850
    num_examples: 581
  - name: shard_10496
    num_bytes: 2672925
    num_examples: 772
  - name: shard_10871
    num_bytes: 2666803
    num_examples: 744
  - name: shard_10960
    num_bytes: 2586483
    num_examples: 789
  - name: shard_10941
    num_bytes: 2750219
    num_examples: 937
  - name: shard_11047
    num_bytes: 1940080
    num_examples: 545
  - name: shard_11025
    num_bytes: 1900405
    num_examples: 569
  - name: shard_10967
    num_bytes: 4183264
    num_examples: 996
  - name: shard_10206
    num_bytes: 3714862
    num_examples: 891
  - name: shard_11018
    num_bytes: 3019471
    num_examples: 871
  - name: shard_10914
    num_bytes: 1980877
    num_examples: 552
  - name: shard_10992
    num_bytes: 1580255
    num_examples: 484
  - name: shard_10606
    num_bytes: 2584262
    num_examples: 640
  - name: shard_10999
    num_bytes: 1950388
    num_examples: 551
  - name: shard_10921
    num_bytes: 2477762
    num_examples: 743
  - name: shard_10315
    num_bytes: 2911312
    num_examples: 743
  - name: shard_10419
    num_bytes: 2586408
    num_examples: 667
  - name: shard_11054
    num_bytes: 2011864
    num_examples: 594
  - name: shard_10289
    num_bytes: 3470407
    num_examples: 963
  - name: shard_10835
    num_bytes: 3026775
    num_examples: 806
  - name: shard_10298
    num_bytes: 2823620
    num_examples: 791
  - name: shard_10455
    num_bytes: 3275368
    num_examples: 750
  - name: shard_10311
    num_bytes: 4072154
    num_examples: 1148
  - name: shard_11090
    num_bytes: 3270282
    num_examples: 858
  - name: shard_11035
    num_bytes: 1447049
    num_examples: 458
  - name: shard_11022
    num_bytes: 2185853
    num_examples: 652
  - name: shard_11111
    num_bytes: 2068341
    num_examples: 615
  - name: shard_11119
    num_bytes: 1970512
    num_examples: 580
  - name: shard_11126
    num_bytes: 1703981
    num_examples: 523
  download_size: 314533805
  dataset_size: 506056044
configs:
- config_name: default
  data_files:
  - split: train
    path: data/*.parquet
  - split: shard_10339
    path: data/shard_10339-*
  - split: shard_10400
    path: data/shard_10400-*
  - split: shard_10424
    path: data/shard_10424-*
  - split: shard_10324
    path: data/shard_10324-*
  - split: shard_10428
    path: data/shard_10428-*
  - split: shard_10258
    path: data/shard_10258-*
  - split: shard_10396
    path: data/shard_10396-*
  - split: shard_10411
    path: data/shard_10411-*
  - split: shard_10418
    path: data/shard_10418-*
  - split: shard_10206
    path: data/shard_10206-*
  - split: shard_10442
    path: data/shard_10442-*
  - split: shard_1045
    path: data/shard_1045-*
  - split: shard_10289
    path: data/shard_10289-*
  - split: shard_10298
    path: data/shard_10298-*
  - split: shard_10344
    path: data/shard_10344-*
  - split: shard_10435
    path: data/shard_10435-*
  - split: shard_10311
    path: data/shard_10311-*
  - split: shard_10405
    path: data/shard_10405-*
  - split: shard_10464
    path: data/shard_10464-*
  - split: shard_10457
    path: data/shard_10457-*
  - split: shard_10439
    path: data/shard_10439-*
  - split: shard_10351
    path: data/shard_10351-*
  - split: shard_10446
    path: data/shard_10446-*
  - split: shard_10315
    path: data/shard_10315-*
  - split: shard_10471
    path: data/shard_10471-*
  - split: shard_1035
    path: data/shard_1035-*
  - split: shard_10456
    path: data/shard_10456-*
  - split: shard_10486
    path: data/shard_10486-*
  - split: shard_10430
    path: data/shard_10430-*
  - split: shard_10469
    path: data/shard_10469-*
  - split: shard_10360
    path: data/shard_10360-*
  - split: shard_10443
    path: data/shard_10443-*
  - split: shard_10453
    path: data/shard_10453-*
  - split: shard_10462
    path: data/shard_10462-*
  - split: shard_10481
    path: data/shard_10481-*
  - split: shard_10482
    path: data/shard_10482-*
  - split: shard_10365
    path: data/shard_10365-*
  - split: shard_10475
    path: data/shard_10475-*
  - split: shard_10444
    path: data/shard_10444-*
  - split: shard_10493
    path: data/shard_10493-*
  - split: shard_10433
    path: data/shard_10433-*
  - split: shard_1037
    path: data/shard_1037-*
  - split: shard_1049
    path: data/shard_1049-*
  - split: shard_10507
    path: data/shard_10507-*
  - split: shard_10521
    path: data/shard_10521-*
  - split: shard_10479
    path: data/shard_10479-*
  - split: shard_10543
    path: data/shard_10543-*
  - split: shard_10494
    path: data/shard_10494-*
  - split: shard_10565
    path: data/shard_10565-*
  - split: shard_10558
    path: data/shard_10558-*
  - split: shard_10506
    path: data/shard_10506-*
  - split: shard_10497
    path: data/shard_10497-*
  - split: shard_10503
    path: data/shard_10503-*
  - split: shard_10488
    path: data/shard_10488-*
  - split: shard_1050
    path: data/shard_1050-*
  - split: shard_10379
    path: data/shard_10379-*
  - split: shard_10366
    path: data/shard_10366-*
  - split: shard_10512
    path: data/shard_10512-*
  - split: shard_10529
    path: data/shard_10529-*
  - split: shard_10477
    path: data/shard_10477-*
  - split: shard_10510
    path: data/shard_10510-*
  - split: shard_10518
    path: data/shard_10518-*
  - split: shard_10514
    path: data/shard_10514-*
  - split: shard_10383
    path: data/shard_10383-*
  - split: shard_10550
    path: data/shard_10550-*
  - split: shard_10525
    path: data/shard_10525-*
  - split: shard_10536
    path: data/shard_10536-*
  - split: shard_10531
    path: data/shard_10531-*
  - split: shard_10538
    path: data/shard_10538-*
  - split: shard_10532
    path: data/shard_10532-*
  - split: shard_10382
    path: data/shard_10382-*
  - split: shard_10509
    path: data/shard_10509-*
  - split: shard_10572
    path: data/shard_10572-*
  - split: shard_1058
    path: data/shard_1058-*
  - split: shard_10455
    path: data/shard_10455-*
  - split: shard_10594
    path: data/shard_10594-*
  - split: shard_10587
    path: data/shard_10587-*
  - split: shard_1054
    path: data/shard_1054-*
  - split: shard_10608
    path: data/shard_10608-*
  - split: shard_10554
    path: data/shard_10554-*
  - split: shard_10563
    path: data/shard_10563-*
  - split: shard_10600
    path: data/shard_10600-*
  - split: shard_10399
    path: data/shard_10399-*
  - split: shard_10409
    path: data/shard_10409-*
  - split: shard_10583
    path: data/shard_10583-*
  - split: shard_10397
    path: data/shard_10397-*
  - split: shard_10595
    path: data/shard_10595-*
  - split: shard_10414
    path: data/shard_10414-*
  - split: shard_10589
    path: data/shard_10589-*
  - split: shard_10622
    path: data/shard_10622-*
  - split: shard_1042
    path: data/shard_1042-*
  - split: shard_10613
    path: data/shard_10613-*
  - split: shard_1062
    path: data/shard_1062-*
  - split: shard_10626
    path: data/shard_10626-*
  - split: shard_10590
    path: data/shard_10590-*
  - split: shard_10659
    path: data/shard_10659-*
  - split: shard_10651
    path: data/shard_10651-*
  - split: shard_10607
    path: data/shard_10607-*
  - split: shard_10637
    path: data/shard_10637-*
  - split: shard_10552
    path: data/shard_10552-*
  - split: shard_10436
    path: data/shard_10436-*
  - split: shard_10645
    path: data/shard_10645-*
  - split: shard_10604
    path: data/shard_10604-*
  - split: shard_10632
    path: data/shard_10632-*
  - split: shard_10611
    path: data/shard_10611-*
  - split: shard_1063
    path: data/shard_1063-*
  - split: shard_10673
    path: data/shard_10673-*
  - split: shard_10419
    path: data/shard_10419-*
  - split: shard_10633
    path: data/shard_10633-*
  - split: shard_10670
    path: data/shard_10670-*
  - split: shard_10680
    path: data/shard_10680-*
  - split: shard_10639
    path: data/shard_10639-*
  - split: shard_10574
    path: data/shard_10574-*
  - split: shard_10658
    path: data/shard_10658-*
  - split: shard_10664
    path: data/shard_10664-*
  - split: shard_10640
    path: data/shard_10640-*
  - split: shard_10648
    path: data/shard_10648-*
  - split: shard_10688
    path: data/shard_10688-*
  - split: shard_10701
    path: data/shard_10701-*
  - split: shard_10677
    path: data/shard_10677-*
  - split: shard_10596
    path: data/shard_10596-*
  - split: shard_10441
    path: data/shard_10441-*
  - split: shard_10683
    path: data/shard_10683-*
  - split: shard_10684
    path: data/shard_10684-*
  - split: shard_10696
    path: data/shard_10696-*
  - split: shard_10606
    path: data/shard_10606-*
  - split: shard_10733
    path: data/shard_10733-*
  - split: shard_10691
    path: data/shard_10691-*
  - split: shard_10699
    path: data/shard_10699-*
  - split: shard_10716
    path: data/shard_10716-*
  - split: shard_10752
    path: data/shard_10752-*
  - split: shard_10447
    path: data/shard_10447-*
  - split: shard_1076
    path: data/shard_1076-*
  - split: shard_10727
    path: data/shard_10727-*
  - split: shard_10746
    path: data/shard_10746-*
  - split: shard_1074
    path: data/shard_1074-*
  - split: shard_10662
    path: data/shard_10662-*
  - split: shard_10714
    path: data/shard_10714-*
  - split: shard_10655
    path: data/shard_10655-*
  - split: shard_10767
    path: data/shard_10767-*
  - split: shard_10720
    path: data/shard_10720-*
  - split: shard_10745
    path: data/shard_10745-*
  - split: shard_1072
    path: data/shard_1072-*
  - split: shard_10774
    path: data/shard_10774-*
  - split: shard_10781
    path: data/shard_10781-*
  - split: shard_10789
    path: data/shard_10789-*
  - split: shard_10796
    path: data/shard_10796-*
  - split: shard_10778
    path: data/shard_10778-*
  - split: shard_10734
    path: data/shard_10734-*
  - split: shard_10741
    path: data/shard_10741-*
  - split: shard_10771
    path: data/shard_10771-*
  - split: shard_1081
    path: data/shard_1081-*
  - split: shard_10831
    path: data/shard_10831-*
  - split: shard_10705
    path: data/shard_10705-*
  - split: shard_10784
    path: data/shard_10784-*
  - split: shard_10846
    path: data/shard_10846-*
  - split: shard_10824
    path: data/shard_10824-*
  - split: shard_10809
    path: data/shard_10809-*
  - split: shard_10756
    path: data/shard_10756-*
  - split: shard_10853
    path: data/shard_10853-*
  - split: shard_10797
    path: data/shard_10797-*
  - split: shard_10868
    path: data/shard_10868-*
  - split: shard_10815
    path: data/shard_10815-*
  - split: shard_10860
    path: data/shard_10860-*
  - split: shard_10763
    path: data/shard_10763-*
  - split: shard_10875
    path: data/shard_10875-*
  - split: shard_10759
    path: data/shard_10759-*
  - split: shard_10628
    path: data/shard_10628-*
  - split: shard_10712
    path: data/shard_10712-*
  - split: shard_10882
    path: data/shard_10882-*
  - split: shard_1089
    path: data/shard_1089-*
  - split: shard_10897
    path: data/shard_10897-*
  - split: shard_10463
    path: data/shard_10463-*
  - split: shard_10918
    path: data/shard_10918-*
  - split: shard_10840
    path: data/shard_10840-*
  - split: shard_10932
    path: data/shard_10932-*
  - split: shard_10910
    path: data/shard_10910-*
  - split: shard_1065
    path: data/shard_1065-*
  - split: shard_10474
    path: data/shard_10474-*
  - split: shard_10770
    path: data/shard_10770-*
  - split: shard_10821
    path: data/shard_10821-*
  - split: shard_10925
    path: data/shard_10925-*
  - split: shard_1094
    path: data/shard_1094-*
  - split: shard_10660
    path: data/shard_10660-*
  - split: shard_10947
    path: data/shard_10947-*
  - split: shard_10866
    path: data/shard_10866-*
  - split: shard_10872
    path: data/shard_10872-*
  - split: shard_10879
    path: data/shard_10879-*
  - split: shard_10671
    path: data/shard_10671-*
  - split: shard_1091
    path: data/shard_1091-*
  - split: shard_10983
    path: data/shard_10983-*
  - split: shard_10929
    path: data/shard_10929-*
  - split: shard_10857
    path: data/shard_10857-*
  - split: shard_10485
    path: data/shard_10485-*
  - split: shard_10969
    path: data/shard_10969-*
  - split: shard_10976
    path: data/shard_10976-*
  - split: shard_10935
    path: data/shard_10935-*
  - split: shard_10948
    path: data/shard_10948-*
  - split: shard_10990
    path: data/shard_10990-*
  - split: shard_10998
    path: data/shard_10998-*
  - split: shard_10885
    path: data/shard_10885-*
  - split: shard_1085
    path: data/shard_1085-*
  - split: shard_10922
    path: data/shard_10922-*
  - split: shard_1048
    path: data/shard_1048-*
  - split: shard_108
    path: data/shard_108-*
  - split: shard_10813
    path: data/shard_10813-*
  - split: shard_10864
    path: data/shard_10864-*
  - split: shard_11010
    path: data/shard_11010-*
  - split: shard_11003
    path: data/shard_11003-*
  - split: shard_11018
    path: data/shard_11018-*
  - split: shard_11025
    path: data/shard_11025-*
  - split: shard_10490
    path: data/shard_10490-*
  - split: shard_10886
    path: data/shard_10886-*
  - split: shard_11032
    path: data/shard_11032-*
  - split: shard_1090
    path: data/shard_1090-*
  - split: shard_10973
    path: data/shard_10973-*
  - split: shard_10893
    path: data/shard_10893-*
  - split: shard_10496
    path: data/shard_10496-*
  - split: shard_10871
    path: data/shard_10871-*
  - split: shard_10960
    path: data/shard_10960-*
  - split: shard_10941
    path: data/shard_10941-*
  - split: shard_11047
    path: data/shard_11047-*
  - split: shard_10967
    path: data/shard_10967-*
  - split: shard_10835
    path: data/shard_10835-*
  - split: shard_10914
    path: data/shard_10914-*
  - split: shard_10992
    path: data/shard_10992-*
  - split: shard_10999
    path: data/shard_10999-*
  - split: shard_10921
    path: data/shard_10921-*
  - split: shard_11054
    path: data/shard_11054-*
  - split: shard_11090
    path: data/shard_11090-*
  - split: shard_11035
    path: data/shard_11035-*
  - split: shard_11022
    path: data/shard_11022-*
  - split: shard_11111
    path: data/shard_11111-*
  - split: shard_11119
    path: data/shard_11119-*
  - split: shard_11126
    path: data/shard_11126-*
---

![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)

# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.

- **Please note the current version is a PREVIEW version. We are still in the process of uploading. Please be patient.** 
 
## Features
- Audio-Video-Text Format:
A combination of:
```
<video>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
```

- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and  text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds, a data record may span over more than 10 secs (e.g., if a data item has two 10 second videos, then the corresponding English text corresponds roughly to 20 seconds of video). 
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. 

- Data Components:
  - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. 
  - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. 
  - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.

- Dataset Size:
  - **About 7,000,000 records.**
  - **About 15,000,000 images, each captioned with FLorence-2.**
  - **About 30,000,000 audio snippets, about half of which transcribed with Whisper-large, and half with Youtube ASR.**
  - **Divided into about 12K shards of about 600 records, each in a parquet file and a corresponding .tar.gz file for the media.**
  - **About 14TB in total.**

## File Organization
- Each data entry follows the `<video><image(s)><audio><text>` structure as described above.
- Metadata includes alignment between modalities, and implicit ordering of audio/visual elements.

## Multimodal Details
- **Audio-Video Alignment**: Snippets allow learning temporal relationships between audio and visual elements.
- **Text Annotations**: Text descriptions, including captions and Youtube ASR English translations, provide linguistic alignment.

## Preprocessing
- **Phashing for Images**: Ensures that images within the dataset are dynamic and non-static.
- **Audio Snippet Lengths**: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns under fair use principles.

------

## Licenses
All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the audio snippets of these videos and select image frames here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content. 
This dataset has only been lightly filtered for safety by removing data records with high proportions of children related words AND high proportions of sexual or violence related words. Moreover, we disclaim all warranties, whether express or implied and all laibilities with respect to infringment, fitness for a particular puprpose, or otherwise.


## Intended Uses
- **Primary Use Case**: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP, CLAP).
- **Not Recommended For**: Generation tasks, as the dataset's quality may not meet generative model requirements.

## Dataset Limitations
- **Quality**: Images and audio are sourced from YouTube and may vary in resolution and clarity.
- **Rights Uncertainty**: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
- **Biases**: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias. 


## Ethical Considerations
The dataset was built under the principles of fair use and CC-BY licensing. Its creation strives to align with the spirit of the  EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.

------

## Policy for Managing Video Deletion Requests

Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.

- **1. Respecting Content Owners' Rights:**
All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license.
If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.

- **2. Deletion Request Process:**
  - Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: [Here](https://support.google.com/youtube/answer/2807622?) and [Here](https://support.google.com/youtube/answer/2801895?hl=en). 
  - Then the onwers or users should verify that it has been removed from YouTube and provide this fact in a feedback to us [Here](https://forms.gle/f4zYzZpJU78SBPho9).
  - Requests must demonstrate that the video is no longer publicly available on YouTube.
  - We will remove the videos confirmed to be deleted in the next release of this dataset.

- **3. Verification and Balancing Interests:**
All deletion requests will be verified by checking YouTube to ensure the video is no longer available.
We may also remove a video in our sole discretion. Decisions on video removal will take into account:
- The rights and wishes of content owners, including their ability to remove their videos from public availability.
- The community's need for robust datasets for training and research.
- The spirit of the CC-BY license, which permits redistribution and use with proper attribution.

- **4. Responsibilities for Derivative Datasets:**
Users creating derivative datasets must ensure compliance by deleting videos listed in `delete_these_videos.json`.

- **5. Proactive Deletion:**
Videos may be removed proactively under the following circumstances:
- Requests from the hosting provider (e.g., Hugging Face).
- Legal requirements or enforcement actions.
- Internal decisions.

- **6. Community Considerations:**
- The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.
- Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.

- **7. Updates:**
Users are encouraged to check the `delete_these_videos.json`, from time to time to ensure their copy of the dataset is up to date.

------
## Related Materials:

  - If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ [YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
  - Also, Huggingface has created an excellent CC-BY Youtube video dataset here: [Finevideo](https://huggingface.co/datasets/HuggingFaceFV/finevideo)
  - LAION is also building a dataset [Here](https://huggingface.co/datasets/laion/laion-audio-preview) which includes Youtube audio snippets paired with Gemini generated captions.

## Acknowledgement and Thanks

This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of our SafeLLM/Aurora-M2 project in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank Huggingface and the open source community for their support.

## About the Contributors:

- [**Grass**](https://www.getgrass.io/) is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io  
- [**LAION**](https://www.laion.ai), is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.  
- [**Ontocord**](https://www.ontocord.ai/ ) is dedicated to making legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.  
- [**Alignment Lab AI**](https://x.com/alignment_lab): Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives.  We believe everyone deserves to harness the power of personal intelligence. 
- And many others ...
  
## Citation
```
@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}
```