File size: 4,672 Bytes
d79b683
0aa286b
bcd5d3f
0aa286b
bcd5d3f
0aa286b
d79b683
 
 
 
 
0aa286b
d79b683
 
 
 
 
 
 
 
 
0aa286b
d79b683
0aa286b
d79b683
 
 
 
 
 
 
 
0aa286b
d79b683
 
 
 
93654d0
0aa286b
d79b683
0aa286b
dd1bcd5
d79b683
 
0aa286b
d79b683
 
 
 
 
 
0aa286b
 
 
 
d79b683
0aa286b
d79b683
 
 
 
 
 
 
 
 
 
 
 
0aa286b
d79b683
 
 
 
 
 
 
 
 
 
 
 
 
 
f583105
d79b683
 
 
f583105
d79b683
 
f583105
d79b683
 
 
 
 
bcd5d3f
d79b683
 
0aa286b
d79b683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import json
import os
from pathlib import Path
import datasets
from PIL import Image
import pandas as pd

logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{LayoutLmv3 for CV extractions,
  title={LayoutLmv3for Key Information Extraction},
  author={MisaR&D Team},
  year={2022},
}
"""
_DESCRIPTION = """\
CV is a collection of receipts. It contains, for each photo about cv personal, a list of OCRs - with the bounding box, text, and class. The goal is to benchmark "key information extraction" - extracting key information from documents
https://arxiv.org/abs/2103.14470
"""

def load_image(image_path):
    image = Image.open(image_path)
    w, h = image.size
    return image, (w,h)

def normalize_bbox(bbox, size):
    return [
        int(1000 * bbox[0] / size[0]),
        int(1000 * bbox[1] / size[1]),
        int(1000 * bbox[2] / size[0]),
        int(1000 * bbox[3] / size[1]),
    ]

def _get_drive_url(url):
    base_url = 'https://drive.google.com/uc?id='
    split_url = url.split('/')
    
    return base_url + split_url[5]
    
_URLS = [
    _get_drive_url("https://drive.google.com/file/d/11SRDeRKUr8XacB7tauiGjkw1PXDGFKUx/")
    _get_drive_url("https://drive.google.com/file/d/1KdDBmGP96lFc7jv2Bf4eqrO121ST-TCh/"),
]

class DatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for WildReceipt Dataset"""
    def __init__(self, **kwargs):
        """BuilderConfig for WildReceipt Dataset.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(DatasetConfig, self).__init__(**kwargs)


class WildReceipt(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        DatasetConfig(name="CV Extractions", version=datasets.Version("1.0.0"), description="CV dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "words": datasets.Sequence(datasets.Value("string")),
                    "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=['person_name', 'dob_key', 'dob_value', 'gender_key', 'gender_value', 'phonenumber_key', 'phonenumber_value', 'email_key', 'email_value', 'address_key', 'address_value', 'socical_address_value', 'education', 'education_name', 'education_time', 'experience', 'experience_name', 'experience_time', 'information', 'undefined']
                        )
                    ),
                    "image_path": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            citation=_CITATION,
            homepage="",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        """Uses local files located with data_dir"""
        downloaded_file = dl_manager.download_and_extract(_URLS)
        dest = Path(downloaded_file[0])/'data1'

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train.txt", "dest": dest}
            ),            
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test.txt", "dest": dest}
            ),
        ]

    def _generate_examples(self, filepath, dest):

        df = pd.read_csv(dest/'class_list.txt', delimiter='\s', header=None)
        id2labels = dict(zip(df[0].tolist(), df[1].tolist()))


        logger.info("⏳ Generating examples from = %s", filepath)

        item_list = []
        with open(filepath, 'r') as f:
            for line in f:
                item_list.append(line.rstrip('\n\r'))
        
        for guid, fname in enumerate(item_list):

            data = json.loads(fname)
            image_path = dest/data['file_name']
            image, size = load_image(image_path)
            boxes = [[i['box'][6], i['box'][7], i['box'][2], i['box'][3]] for i in data['annotations']]

            text = [i['text'] for i in data['annotations']]
            label = [id2labels[i['label']] for i in data['annotations']]
            
            boxes = [normalize_bbox(box, size) for box in boxes]
            
            flag=0
            for i in boxes:
              for j in i:
                if j>1000:
                  flag+=1
                  pass
            if flag>0: print(image_path)
 
            yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path}