nvm472001 commited on
Commit
d79b683
·
1 Parent(s): 100bb86

Upload cvdataset-layoutlmv3.py (#5)

Browse files

- Upload cvdataset-layoutlmv3.py (99ec04f5ef5054baf038d8285bc4b84c189701b5)

Files changed (1) hide show
  1. cvdataset-layoutlmv3.py +128 -0
cvdataset-layoutlmv3.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from pathlib import Path
4
+ import datasets
5
+ from PIL import Image
6
+ import pandas as pd
7
+
8
+ logger = datasets.logging.get_logger(__name__)
9
+ _CITATION = """\
10
+ @article{LayoutLmv3 for CV extractions,
11
+ title={LayoutLmv3for Key Information Extraction},
12
+ author={MisaR&D Team},
13
+ year={2022},
14
+ }
15
+ """
16
+ _DESCRIPTION = """\
17
+ CV is a collection of receipts. It contains, for each photo about cv personal, a list of OCRs - with the bounding box, text, and class. The goal is to benchmark "key information extraction" - extracting key information from documents
18
+ https://arxiv.org/abs/2103.14470
19
+ """
20
+
21
+ def load_image(image_path):
22
+ image = Image.open(image_path)
23
+ w, h = image.size
24
+ return image, (w,h)
25
+
26
+ def normalize_bbox(bbox, size):
27
+ return [
28
+ int(1000 * bbox[0] / size[0]),
29
+ int(1000 * bbox[1] / size[1]),
30
+ int(1000 * bbox[2] / size[0]),
31
+ int(1000 * bbox[3] / size[1]),
32
+ ]
33
+
34
+ def _get_drive_url(url):
35
+ base_url = 'https://drive.google.com/uc?id='
36
+ split_url = url.split('/')
37
+
38
+ return base_url + split_url[5]
39
+
40
+ _URLS = [
41
+ _get_drive_url("https://drive.google.com/file/d/1KdDBmGP96lFc7jv2Bf4eqrO121ST-TCh/"),
42
+ ]
43
+
44
+ class DatasetConfig(datasets.BuilderConfig):
45
+ """BuilderConfig for WildReceipt Dataset"""
46
+ def __init__(self, **kwargs):
47
+ """BuilderConfig for WildReceipt Dataset.
48
+ Args:
49
+ **kwargs: keyword arguments forwarded to super.
50
+ """
51
+ super(DatasetConfig, self).__init__(**kwargs)
52
+
53
+
54
+ class WildReceipt(datasets.GeneratorBasedBuilder):
55
+ BUILDER_CONFIGS = [
56
+ DatasetConfig(name="CV Extractions", version=datasets.Version("1.0.0"), description="CV dataset"),
57
+ ]
58
+
59
+ def _info(self):
60
+ return datasets.DatasetInfo(
61
+ description=_DESCRIPTION,
62
+ features=datasets.Features(
63
+ {
64
+ "id": datasets.Value("string"),
65
+ "words": datasets.Sequence(datasets.Value("string")),
66
+ "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
67
+ "ner_tags": datasets.Sequence(
68
+ datasets.features.ClassLabel(
69
+ names=['person_name', 'dob_key', 'dob_value', 'gender_key', 'gender_value', 'phonenumber_key', 'phonenumber_value', 'email_key', 'email_value', 'address_key', 'address_value', 'socical_address_value', 'education', 'education_name', 'education_time', 'experience', 'experience_name', 'experience_time', 'information', 'undefined']
70
+ )
71
+ ),
72
+ "image_path": datasets.Value("string"),
73
+ }
74
+ ),
75
+ supervised_keys=None,
76
+ citation=_CITATION,
77
+ homepage="",
78
+ )
79
+
80
+ def _split_generators(self, dl_manager):
81
+ """Returns SplitGenerators."""
82
+ """Uses local files located with data_dir"""
83
+ downloaded_file = dl_manager.download_and_extract(_URLS)
84
+ dest = Path(downloaded_file[0])/'data1'
85
+
86
+ return [
87
+ datasets.SplitGenerator(
88
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train.txt", "dest": dest}
89
+ ),
90
+ datasets.SplitGenerator(
91
+ name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test.txt", "dest": dest}
92
+ ),
93
+ ]
94
+
95
+ def _generate_examples(self, filepath, dest):
96
+
97
+ df = pd.read_csv(dest/'class_list.txt', delimiter='\s', header=None)
98
+ id2labels = dict(zip(df[0].tolist(), df[1].tolist()))
99
+
100
+
101
+ logger.info("⏳ Generating examples from = %s", filepath)
102
+
103
+ item_list = []
104
+ with open(filepath, 'r') as f:
105
+ for line in f:
106
+ item_list.append(line.rstrip('\n\r'))
107
+
108
+ for guid, fname in enumerate(item_list):
109
+
110
+ data = json.loads(fname)
111
+ image_path = dest/data['file_name']
112
+ image, size = load_image(image_path)
113
+ boxes = [[i['box'][6], i['box'][7], i['box'][2], i['box'][3]] for i in data['annotations']]
114
+
115
+ text = [i['text'] for i in data['annotations']]
116
+ label = [id2labels[i['label']] for i in data['annotations']]
117
+
118
+ boxes = [normalize_bbox(box, size) for box in boxes]
119
+
120
+ flag=0
121
+ for i in boxes:
122
+ for j in i:
123
+ if j>1000:
124
+ flag+=1
125
+ pass
126
+ if flag>0: print(image_path)
127
+
128
+ yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path}