Datasets:

File size: 12,203 Bytes
63b4574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aeb3eb
 
63b4574
 
 
 
 
 
 
 
 
 
 
 
b41a143
63b4574
 
 
5aeb3eb
63b4574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aeb3eb
63b4574
 
 
 
 
5aeb3eb
63b4574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aeb3eb
63b4574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aeb3eb
63b4574
 
 
5aeb3eb
 
 
 
 
 
 
 
63b4574
5aeb3eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b4574
5aeb3eb
 
 
 
 
 
63b4574
5aeb3eb
 
63b4574
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""JMultiWOZ: Japanese Multi-Domain Wizard-of-Oz dataset for task-oriented dialogue modelling"""

import json
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{ohashi-etal-2024-jmultiwoz,
    title = "JMultiWOZ: A Large-Scale Japanese Multi-Domain Task-Oriented Dialogue Dataset",
    author = "Ohashi, Atsumoto and Hirai, Ryu and Iizuka, Shinya and Higashinaka, Ryuichiro",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation",
    year = "2024",
    url = "",
    pages = "",
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
JMultiWOZ is a large-scale Japanese multi-domain task-oriented dialogue dataset. The dataset is collected using 
the Wizard-of-Oz (WoZ) methodology, where two human annotators simulate the user and the system. The dataset contains 
4,246 dialogues across 6 domains, including restaurant, hotel, attraction, shopping, taxi, and weather. Available 
annotations include user goal, dialogue state, and utterances.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/nu-dialogue/jmultiwoz"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC BY-ND 4.0"

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "original_zip": "https://github.com/nu-dialogue/jmultiwoz/raw/master/dataset/JMultiWOZ_1.0.zip",
}


def _flatten_value(values) -> str:
    if not isinstance(values, list):
        return values
    flat_values = [
        _flatten_value(v) if isinstance(v, list) else v for v in values
    ]
    return "[" + ", ".join(flat_values) + "]"

# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class JMultiWOZDataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        features = datasets.Features({
            "dialogue_id": datasets.Value("int32"),
            "dialogue_name": datasets.Value("string"),
            "system_name": datasets.Value("string"),
            "user_name": datasets.Value("string"),
            "goal": datasets.Sequence({
                "domain": datasets.Value("string"),
                "task": datasets.Value("string"),
                "slot": datasets.Value("string"),
                "value": datasets.Value("string"),
            }),
            "goal_description": datasets.Sequence({
                "domain": datasets.Value("string"),
                "text": datasets.Value("string"),
            }),
            "turns": datasets.Sequence({
                "turn_id": datasets.Value("int32"),
                "speaker": datasets.Value("string"),
                "utterance": datasets.Value("string"),
                "dialogue_state": {
                    "belief_state": datasets.Sequence({
                        "domain": datasets.Value("string"),
                        "slot": datasets.Value("string"),
                        "value": datasets.Value("string"),
                    }),
                    "book_state": datasets.Sequence({
                        "domain": datasets.Value("string"),
                        "slot": datasets.Value("string"),
                        "value": datasets.Value("string"),
                    }),
                    "db_result": {
                        "candidate_entities": datasets.Sequence(datasets.Value("string")),
                        "active_entity": datasets.Sequence({
                            "slot": datasets.Value("string"),
                            "value": datasets.Value("string"),
                        })
                    },
                    "book_result": datasets.Sequence({
                        "domain": datasets.Value("string"),
                        "success": datasets.Value("string"),
                        "ref": datasets.Value("string"),
                    }),
                }
            }),
        })


        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = dl_manager.download_and_extract(_URLS["original_zip"])
        split_list_path = os.path.join(data_dir, "JMultiWOZ_1.0/split_list.json")
        dialogues_path = os.path.join(data_dir, "JMultiWOZ_1.0/dialogues.json")
        with open(split_list_path, "r", encoding="utf-8") as f:
            split_list = json.load(f)
        with open(dialogues_path, "r", encoding="utf-8") as f:
            dialogues = json.load(f)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "dialogues": [dialogues[dialogue_name] for dialogue_name in split_list["train"]],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "dialogues": [dialogues[dialogue_name] for dialogue_name in split_list["dev"]],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "dialogues": [dialogues[dialogue_name] for dialogue_name in split_list["test"]],
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, dialogues):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        
        for id_, dialogue in enumerate(dialogues):
            example = {
                "dialogue_id": dialogue["dialogue_id"],
                "dialogue_name": dialogue["dialogue_name"],
                "system_name": dialogue["system_name"],
                "user_name": dialogue["user_name"],
                "goal": [],
                "goal_description": [],
                "turns": [],
            }

            for domain, tasks in dialogue["goal"].items():
                for task, slot_values in tasks.items():
                    if task == "reqt":
                        slot_values = {slot: None for slot in slot_values}
                    for slot, value in slot_values.items():
                        example["goal"].append({
                            "domain": domain,
                            "task": task,
                            "slot": slot,
                            "value": value,
                        })
            
            for domain, texts in dialogue["goal_description"].items():
                for text in texts:
                    example["goal_description"].append({
                        "domain": domain,
                        "text": text,
                    })
            
            for turn in dialogue["turns"]:
                example_turn = {
                    "turn_id": turn["turn_id"],
                    "speaker": turn["speaker"],
                    "utterance": turn["utterance"],
                    "dialogue_state": {
                        "belief_state": [],
                        "book_state": [],
                        "db_result": {},
                        "book_result": [],
                    },
                }
                if turn["speaker"] == "SYSTEM":
                    for domain, slots in turn["dialogue_state"]["belief_state"].items():
                        for slot, value in slots.items():
                            example_turn["dialogue_state"]["belief_state"].append({
                                "domain": domain,
                                "slot": slot,
                                "value": value,
                            })

                    for domain, slots in turn["dialogue_state"]["book_state"].items():
                        for slot, value in slots.items():
                            example_turn["dialogue_state"]["book_state"].append({
                                "domain": domain,
                                "slot": slot,
                                "value": value,
                            })
                    
                    candidate_entities = turn["dialogue_state"]["db_result"]["candidate_entities"]
                    active_entity = turn["dialogue_state"]["db_result"]["active_entity"]
                    if not active_entity:
                        active_entity = {}
                    example_turn["dialogue_state"]["db_result"] = {
                        "candidate_entities":candidate_entities,
                        "active_entity": [{
                            "slot": slot,
                            "value": _flatten_value(value),
                        } for slot, value in active_entity.items()]
                    }
                    
                    for domain, result in turn["dialogue_state"]["book_result"].items():
                        example_turn["dialogue_state"]["book_result"].append({
                            "domain": domain,
                            "success": result["success"],
                            "ref": result["ref"],
                        })
                
                example["turns"].append(example_turn)

            yield id_, example