The dataset viewer is taking too long to fetch the data. Try to refresh this page.
Server-side error
Error code:   ClientConnectionError

World Heightmaps 256px

This is a dataset of 256x256 Earth heightmaps generated from SRTM 1 Arc-Second Global. Each heightmap is labelled according to its latitude and longitude. There are 573,995 samples. It is the same as World Heightmaps 360px but downsampled to 256x256.


  1. Convert GeoTIFFs into PNGs with Rasterio.
import rasterio
import matplotlib.pyplot as plt
import os

input_directory = '...'
output_directory = '...'
file_list = os.listdir(input_directory)

for i in range(len(file_list)):
    image = + file_list[i])
    plt.imsave(output_directory + file_list[i][0:-4] + '.png',, cmap='gray')
  1. Split PNGs into 100 patches with Split Image.
from split_image import split_image
import os

input_directory = '...'
output_directory = '...'
file_list = os.listdir(input_directory)

for i in range(len(file_list)):
    split_image(input_directory + file_list[i], 10, 10, should_square=True, should_cleanup=False, output_dir=output_directory)
  1. Hand pick a dataset of corrupted and uncorrupted heightmaps then train a discriminator to automatically filter the whole dataset.

  2. Downsample from 360x360 to 256x256 with Pillow and the Lanczos resampling method.

import glob
from PIL import Image

paths = glob.glob('world-heightmaps-360px-png/data/*/*')

for file_name in paths:
    image =
    if image.width == 256:
    image = image.resize((256, 256), resample=Image.LANCZOS)
  1. Compile images into parquet files.
import pyarrow as pa
import pyarrow.parquet as pq
import pandas as pd
from PIL import Image
import os
import io
import json

samples_per_file = 10_000

root_dir = 'data/datasets/world-heightmaps-256px-png'
df = pd.read_csv(os.path.join(root_dir, 'metadata.csv'))
df = df.sample(frac=1).reset_index(drop=True)

def save_table(image_data, table_number):
    print(f'Entries in table {table_number}: {len(image_data)}')
    schema = pa.schema(
            ('heightmap', pa.struct([('bytes', pa.binary()), ('path', pa.string())])),
            ('latitude', pa.string()),
            ('longitude', pa.string())
            b'huggingface': json.dumps({
                'info': {
                    'features': {
                        'heightmap': {'_type': 'Image'},
                        'latitude': {'_type': 'Value', 'dtype': 'string'},
                        'longitude': {'_type': 'Value', 'dtype': 'string'}

    table = pa.Table.from_pylist(image_data, schema=schema)
    pq.write_table(table, f'data/world-heightmaps-256px-parquet/{str(table_number).zfill(4)}.parquet')

image_data = []
samples_in_current_file = 0
current_file_number = 0
for i, row in df.iterrows():
    if samples_in_current_file >= samples_per_file:
        save_table(image_data, current_file_number)
        image_data = []
        samples_in_current_file = 0
        current_file_number += 1
    samples_in_current_file += 1
    image_path = row['file_name']
    with, image_path)) as image:
        image_bytes = io.BytesIO(), format='PNG')
        image_dict = {
            'heightmap': {
                'bytes': image_bytes.getvalue(),
                'path': image_path
            'latitude': str(row['latitude']),
            'longitude': str(row['longitude'])

save_table(image_data, current_file_number)
Downloads last month
Edit dataset card

Models trained or fine-tuned on novaia/world-heightmaps-256px

Collection including novaia/world-heightmaps-256px