File size: 11,278 Bytes
32a1f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c6187
 
ddb5420
 
 
 
 
 
 
 
 
11c3175
 
 
 
 
 
 
 
 
 
 
 
ddb5420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e533946
ddb5420
 
 
 
 
 
32a1f49
 
a81fd7b
32a1f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4274d7c
32a1f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
---
annotations_creators:
- expert-generated
language:
- en
- fr
- es
language_creators:
- expert-generated
license:
- apache-2.0
multilinguality:
- multilingual
pretty_name: HumSet
size_categories:
- 100K<n<1M
source_datasets:
- original
tags:
- humanitarian
- research
- analytical-framework
- multilabel
- humset
- humbert
task_categories:
- text-classification
- text-retrieval
- token-classification
task_ids:
- multi-label-classification
dataset_info:
  features:
  - name: entry_id
    dtype: string
  - name: lead_id
    dtype: string
  - name: project_id
    dtype: string
  - name: sectors
    sequence:
          class_label:
            names:
                0: Agriculture
                1: Cross
                2: Education
                3: Food Security
                4: Health
                5: Livelihood
                6: Logistics
                7: Nutrition
                8: Protection
                9: Shelter
                10: WASH
  - name: pillars_1d
    sequence:
        class_label:
          names:
              0: Casualties
              1: Context
              2: Covid-19
              3: Displacement
              4: Humanitarian Access
              5: Information And Communication
              6: Shock/Event
  - name: pillars_2d
    sequence:
        class_label:
          names:
              0: At Risk
              1: Capacities & Response
              2: Humanitarian Conditions
              3: Impact
              4: Priority Interventions
              5: Priority Needs
  - name: subpillars_1d
    sequence:
        class_label:
          names:
              0: Casualties->Dead
              1: Casualties->Injured
              2: Casualties->Missing
              3: Context->Demography
              4: Context->Economy
              5: Context->Environment
              6: Context->Legal & Policy
              7: Context->Politics
              8: Context->Security & Stability
              9: Context->Socio Cultural
              10: Covid-19->Cases
              11: Covid-19->Contact Tracing
              12: Covid-19->Deaths
              13: Covid-19->Hospitalization & Care
              14: Covid-19->Restriction Measures
              15: Covid-19->Testing
              16: Covid-19->Vaccination
              17: Displacement->Intentions
              18: Displacement->Local Integration
              19: Displacement->Pull Factors
              20: Displacement->Push Factors
              21: Displacement->Type/Numbers/Movements
              22: Humanitarian Access->Number Of People Facing Humanitarian Access Constraints/Humanitarian Access Gaps
              23: Humanitarian Access->Physical Constraints
              24: Humanitarian Access->Population To Relief
              25: Humanitarian Access->Relief To Population
              26: Information And Communication->Communication Means And Preferences
              27: Information And Communication->Information Challenges And Barriers
              28: Information And Communication->Knowledge And Info Gaps (Hum)
              29: Information And Communication->Knowledge And Info Gaps (Pop)
              30: Shock/Event->Hazard & Threats
              31: Shock/Event->Type And Characteristics
              32: Shock/Event->Underlying/Aggravating Factors
  
  - name: subpillars_2d
    sequence:
        class_label:
          names:
            0: At Risk->Number Of People At Risk
            1: At Risk->Risk And Vulnerabilities
            2: Capacities & Response->International Response
            3: Capacities & Response->Local Response
            4: Capacities & Response->National Response
            5: Capacities & Response->Number Of People Reached/Response Gaps
            6: Humanitarian Conditions->Coping Mechanisms
            7: Humanitarian Conditions->Living Standards
            8: Humanitarian Conditions->Number Of People In Need
            9: Humanitarian Conditions->Physical And Mental Well Being
            10: Impact->Driver/Aggravating Factors
            11: Impact->Impact On People
            12: Impact->Impact On Systems, Services And Networks
            13: Impact->Number Of People Affected
            14: Priority Interventions->Expressed By Humanitarian Staff
            15: Priority Interventions->Expressed By Population
            16: Priority Needs->Expressed By Humanitarian Staff
            17: Priority Needs->Expressed By Population
  - name: project_title
    dtype: string
  - name: created_at
    dtype: string
  - name: document
    dtype: string
  - name: excerpt
    dtype: string
  splits:
  - name: train
    num_examples: 117435
  - name: validation
    num_examples: 16039
  - name: test
    num_examples: 15147
---

# Dataset Card for HumSet

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [http://blog.thedeep.io/humset/](http://blog.thedeep.io/humset/)
- **Repository:** [https://github.com/the-deep/humset](https://github.com/the-deep/humset)
- **Paper:** [EMNLP Findings 2022](https://preview.aclanthology.org/emnlp-22-ingestion/2022.findings-emnlp.321/)
- **Leaderboard:**
- **Point of Contact:**[the DEEP NLP team](mailto:nlp@thedeep.io)

### Dataset Summary

HumSet is a novel and rich multilingual dataset of humanitarian response documents annotated by experts in the humanitarian response community. HumSet is curated by humanitarian analysts and covers various disasters around the globe that occurred from 2018 to 2021 in 46 humanitarian response projects. The dataset consists of approximately 17K annotated documents in three languages of English, French, and Spanish, originally taken from publicly-available resources. For each document, analysts have identified informative snippets (entries) in respect to common humanitarian frameworks, and assigned one or many classes to each entry. See the our paper for details.

### Supported Tasks and Leaderboards

This dataset is intended for multi-label classification 

### Languages

This dataset is in English, French and Spanish

## Dataset Structure


### Data Instances

[More Information Needed]

### Data Fields

<div class="alert bg-success text-dark" cellspacing="0" style="width:100%">
  <table id="leaderboard_head_dctr" class="table table-bordered" cellspacing="0">
    <thead>
      <tr><th>entry_id</th><th>lead_id</th><th>project_id</th><th>sectors</th><th>pillars_1d</th><th>pillars_2d</th><th>subpillars_1d</th><th>subpillars_2d</th><th>lang</th><th>n_tokens</th><th>project_title</th><th>created_at</th><th>document</th><th>excerpt</th></tr>
    </thead>
  </table>
</div>

- **entry_id**: tpyeunique identification number for a given entry. (int64)
- **lead_id**: unique identification number for the document to which the corrisponding entry belongs. (int64)
- **sectors**, **pillars_1d**, **pillars_2d**, **subpillars_1d**, **subpillars_2d**: labels assigned to the corresponding entry. Since this is a multi-label dataset (each entry may have several annotations belonging to the same category), they are reported as arrays of strings. See the paper for a detailed description of these categories. (list)
- **lang**: language. (str)
- **n_tokens**: number of tokens (tokenized using NLTK v3.7 library). (int64)
- **project_title**: the name of the project where the corresponding annotation was created. (str)
- **created_at**: date and time of creation of the annotation in stardard ISO 8601 format. (str)
- **document**: document URL source of the excerpt. (str)
- **excerpt**: excerpt text. (str)

### Data Splits

The dataset includes a set of train/validation/test splits, with 117435, 16039 and 15147 examples respectively.

## Dataset Creation

The collection originated from a multi-organizational platform called <em>the Data Entry and Exploration Platform (DEEP)</em> developed and maintained by Data Friendly Space (DFS). The platform facilitates classifying primarily qualitative information with respect to analysis frameworks and allows for collaborative classification and annotation of secondary data. 

### Curation Rationale

[More Information Needed]

### Source Data

Documents are selected from different sources, ranging from official reports by humanitarian organizations to international and national media articles. See the paper for more informations. 

#### Initial Data Collection and Normalization

#### Who are the source language producers?

[More Information Needed]


#### Annotation process

HumSet is curated by humanitarian analysts and covers various disasters around the globe that occurred from 2018 to 2021 in 46 humanitarian response projects. The dataset consists of approximately 17K annotated documents in three
languages of English, French, and Spanish, originally taken from publicly-available resources. For
each document, analysts have identified informative snippets (entries, or excerpt in the imported dataset) with respect to common <em>humanitarian frameworks</em> and assigned one or many classes to each entry.

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

NLP team at [Data Friendly Space](https://datafriendlyspace.org/)

### Licensing Information

The GitHub repository which houses this dataset has an Apache License 2.0.

### Citation Information

```
@misc{https://doi.org/10.48550/arxiv.2210.04573,
  doi = {10.48550/ARXIV.2210.04573},
  url = {https://arxiv.org/abs/2210.04573},
  author = {Fekih, Selim and Tamagnone, Nicolò and Minixhofer, Benjamin and Shrestha, Ranjan and Contla, Ximena and Oglethorpe, Ewan and Rekabsaz, Navid},
  keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crisis Response},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}
```