text
stringlengths 1
1.02k
| class_index
int64 0
305
| source
stringclasses 77
values |
---|---|---|
class EvalResult:
"""
Flattened representation of individual evaluation results found in model-index of Model Cards.
For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1. | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Args:
task_type (`str`):
The task identifier. Example: "image-classification".
dataset_type (`str`):
The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
dataset_name (`str`):
A pretty name for the dataset. Example: "Common Voice (French)".
metric_type (`str`):
The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
metric_value (`Any`):
The metric value. Example: 0.9 or "20.0 ± 1.2".
task_name (`str`, *optional*):
A pretty name for the task. Example: "Speech Recognition".
dataset_config (`str`, *optional*):
The name of the dataset configuration used in `load_dataset()`.
Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
dataset_split (`str`, *optional*):
The split used in `load_dataset()`. Example: "test".
dataset_revision (`str`, *optional*):
The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
Example: 5503434ddd753f426f4b38109466949a1217c2bb
dataset_args (`Dict[str, Any]`, *optional*):
The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
metric_name (`str`, *optional*):
A pretty name for the metric. Example: "Test WER".
metric_config (`str`, *optional*):
The name of the metric configuration used in `load_metric()`.
Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
metric_args (`Dict[str, Any]`, *optional*): | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
verified (`bool`, *optional*):
Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
verify_token (`str`, *optional*):
A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
source_name (`str`, *optional*):
The name of the source of the evaluation result. Example: "Open LLM Leaderboard".
source_url (`str`, *optional*):
The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard".
""" | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
# Required
# The task identifier
# Example: automatic-speech-recognition
task_type: str
# The dataset identifier
# Example: common_voice. Use dataset id from https://hf.co/datasets
dataset_type: str
# A pretty name for the dataset.
# Example: Common Voice (French)
dataset_name: str
# The metric identifier
# Example: wer. Use metric id from https://hf.co/metrics
metric_type: str
# Value of the metric.
# Example: 20.0 or "20.0 ± 1.2"
metric_value: Any
# Optional
# A pretty name for the task.
# Example: Speech Recognition
task_name: Optional[str] = None
# The name of the dataset configuration used in `load_dataset()`.
# Example: fr in `load_dataset("common_voice", "fr")`.
# See the `datasets` docs for more info:
# https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
dataset_config: Optional[str] = None | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
# The split used in `load_dataset()`.
# Example: test
dataset_split: Optional[str] = None
# The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
# Example: 5503434ddd753f426f4b38109466949a1217c2bb
dataset_revision: Optional[str] = None
# The arguments passed during `Metric.compute()`.
# Example for `bleu`: max_order: 4
dataset_args: Optional[Dict[str, Any]] = None
# A pretty name for the metric.
# Example: Test WER
metric_name: Optional[str] = None
# The name of the metric configuration used in `load_metric()`.
# Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
# See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
metric_config: Optional[str] = None
# The arguments passed during `Metric.compute()`.
# Example for `bleu`: max_order: 4
metric_args: Optional[Dict[str, Any]] = None | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
# Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
verified: Optional[bool] = None
# A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
verify_token: Optional[str] = None
# The name of the source of the evaluation result.
# Example: Open LLM Leaderboard
source_name: Optional[str] = None
# The URL of the source of the evaluation result.
# Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
source_url: Optional[str] = None | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
@property
def unique_identifier(self) -> tuple:
"""Returns a tuple that uniquely identifies this evaluation."""
return (
self.task_type,
self.dataset_type,
self.dataset_config,
self.dataset_split,
self.dataset_revision,
)
def is_equal_except_value(self, other: "EvalResult") -> bool:
"""
Return True if `self` and `other` describe exactly the same metric but with a
different value.
"""
for key, _ in self.__dict__.items():
if key == "metric_value":
continue
# For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`,
# so we exclude it here in the comparison.
if key != "verify_token" and getattr(self, key) != getattr(other, key):
return False
return True | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
def __post_init__(self) -> None:
if self.source_name is not None and self.source_url is None:
raise ValueError("If `source_name` is provided, `source_url` must also be provided.") | 0 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
class CardData:
"""Structure containing metadata from a RepoCard.
[`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`].
Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
(example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not
inherit from `dict` to allow this export step.
"""
def __init__(self, ignore_metadata_errors: bool = False, **kwargs):
self.__dict__.update(kwargs)
def to_dict(self):
"""Converts CardData to a dict.
Returns:
`dict`: CardData represented as a dictionary ready to be dumped to a YAML
block for inclusion in a README.md file.
"""
data_dict = copy.deepcopy(self.__dict__)
self._to_dict(data_dict)
return {key: value for key, value in data_dict.items() if value is not None} | 1 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
def _to_dict(self, data_dict):
"""Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.
Args:
data_dict (`dict`): The raw dict representation of the card data.
"""
pass
def to_yaml(self, line_break=None, original_order: Optional[List[str]] = None) -> str:
"""Dumps CardData to a YAML block for inclusion in a README.md file.
Args:
line_break (str, *optional*):
The line break to use when dumping to yaml.
Returns:
`str`: CardData represented as a YAML block.
"""
if original_order:
self.__dict__ = {
k: self.__dict__[k]
for k in original_order + list(set(self.__dict__.keys()) - set(original_order))
if k in self.__dict__
}
return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip() | 1 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
def __repr__(self):
return repr(self.__dict__)
def __str__(self):
return self.to_yaml()
def get(self, key: str, default: Any = None) -> Any:
"""Get value for a given metadata key."""
return self.__dict__.get(key, default)
def pop(self, key: str, default: Any = None) -> Any:
"""Pop value for a given metadata key."""
return self.__dict__.pop(key, default)
def __getitem__(self, key: str) -> Any:
"""Get value for a given metadata key."""
return self.__dict__[key]
def __setitem__(self, key: str, value: Any) -> None:
"""Set value for a given metadata key."""
self.__dict__[key] = value
def __contains__(self, key: str) -> bool:
"""Check if a given metadata key is set."""
return key in self.__dict__
def __len__(self) -> int:
"""Return the number of metadata keys set."""
return len(self.__dict__) | 1 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
class ModelCardData(CardData):
"""Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Args:
base_model (`str` or `List[str]`, *optional*):
The identifier of the base model from which the model derives. This is applicable for example if your model is a
fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs
if your model derives from multiple models). Defaults to None.
datasets (`Union[str, List[str]]`, *optional*):
Dataset or list of datasets that were used to train this model. Should be a dataset ID
found on https://hf.co/datasets. Defaults to None.
eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
`model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
language (`Union[str, List[str]]`, *optional*): | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
library_name (`str`, *optional*):
Name of library used by this model. Example: keras or any library from
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts.
Defaults to None.
license (`str`, *optional*):
License of this model. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
license_name (`str`, *optional*):
Name of the license of this model. Defaults to None. To be used in conjunction with `license_link`.
Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a name. In that case, use `license` instead.
license_link (`str`, *optional*): | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Link to the license of this model. Defaults to None. To be used in conjunction with `license_name`.
Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a link. In that case, use `license` instead.
metrics (`List[str]`, *optional*):
List of metrics used to evaluate this model. Should be a metric name that can be found
at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
model_name (`str`, *optional*):
A name for this model. It is used along with
`eval_results` to construct the `model-index` within the card's metadata. The name
you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
then the repo name is used as a default. Defaults to None.
pipeline_tag (`str`, *optional*):
The pipeline tag associated with the model. Example: "text-classification".
tags (`List[str]`, *optional*): | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
List of tags to add to your model that can be used when filtering on the Hugging
Face Hub. Defaults to None.
ignore_metadata_errors (`str`):
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
the process. Use it at your own risk.
kwargs (`dict`, *optional*):
Additional metadata that will be added to the model card. Defaults to None. | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Example:
```python
>>> from huggingface_hub import ModelCardData
>>> card_data = ModelCardData(
... language="en",
... license="mit",
... library_name="timm",
... tags=['image-classification', 'resnet'],
... )
>>> card_data.to_dict()
{'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}
```
""" | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
def __init__(
self,
*,
base_model: Optional[Union[str, List[str]]] = None,
datasets: Optional[Union[str, List[str]]] = None,
eval_results: Optional[List[EvalResult]] = None,
language: Optional[Union[str, List[str]]] = None,
library_name: Optional[str] = None,
license: Optional[str] = None,
license_name: Optional[str] = None,
license_link: Optional[str] = None,
metrics: Optional[List[str]] = None,
model_name: Optional[str] = None,
pipeline_tag: Optional[str] = None,
tags: Optional[List[str]] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.base_model = base_model
self.datasets = datasets
self.eval_results = eval_results
self.language = language
self.library_name = library_name
self.license = license
self.license_name = license_name
self.license_link = license_link
self.metrics = metrics | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
self.model_name = model_name
self.pipeline_tag = pipeline_tag
self.tags = _to_unique_list(tags) | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
model_index = kwargs.pop("model-index", None)
if model_index:
try:
model_name, eval_results = model_index_to_eval_results(model_index)
self.model_name = model_name
self.eval_results = eval_results
except (KeyError, TypeError) as error:
if ignore_metadata_errors:
logger.warning("Invalid model-index. Not loading eval results into CardData.")
else:
raise ValueError(
f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass"
" `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:"
" some information will be lost. Use it at your own risk."
)
super().__init__(**kwargs) | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
if self.eval_results:
if isinstance(self.eval_results, EvalResult):
self.eval_results = [self.eval_results]
if self.model_name is None:
raise ValueError("Passing `eval_results` requires `model_name` to be set.")
def _to_dict(self, data_dict):
"""Format the internal data dict. In this case, we convert eval results to a valid model index"""
if self.eval_results is not None:
data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results)
del data_dict["eval_results"], data_dict["model_name"] | 2 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
class DatasetCardData(CardData):
"""Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md | 3 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Args:
language (`List[str]`, *optional*):
Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
639-3 code (two/three letters), or a special value like "code", "multilingual".
license (`Union[str, List[str]]`, *optional*):
License(s) of this dataset. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses.
annotations_creators (`Union[str, List[str]]`, *optional*):
How the annotations for the dataset were created.
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
language_creators (`Union[str, List[str]]`, *optional*):
How the text-based data in the dataset was created.
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
multilinguality (`Union[str, List[str]]`, *optional*):
Whether the dataset is multilingual. | 3 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Options are: 'monolingual', 'multilingual', 'translation', 'other'.
size_categories (`Union[str, List[str]]`, *optional*):
The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
'100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
source_datasets (`List[str]]`, *optional*):
Indicates whether the dataset is an original dataset or extended from another existing dataset.
Options are: 'original' and 'extended'.
task_categories (`Union[str, List[str]]`, *optional*):
What categories of task does the dataset support?
task_ids (`Union[str, List[str]]`, *optional*):
What specific tasks does the dataset support?
paperswithcode_id (`str`, *optional*):
ID of the dataset on PapersWithCode.
pretty_name (`str`, *optional*): | 3 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
train_eval_index (`Dict`, *optional*):
A dictionary that describes the necessary spec for doing evaluation on the Hub.
If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
config_names (`Union[str, List[str]]`, *optional*):
A list of the available dataset configs for the dataset.
""" | 3 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
def __init__(
self,
*,
language: Optional[Union[str, List[str]]] = None,
license: Optional[Union[str, List[str]]] = None,
annotations_creators: Optional[Union[str, List[str]]] = None,
language_creators: Optional[Union[str, List[str]]] = None,
multilinguality: Optional[Union[str, List[str]]] = None,
size_categories: Optional[Union[str, List[str]]] = None,
source_datasets: Optional[List[str]] = None,
task_categories: Optional[Union[str, List[str]]] = None,
task_ids: Optional[Union[str, List[str]]] = None,
paperswithcode_id: Optional[str] = None,
pretty_name: Optional[str] = None,
train_eval_index: Optional[Dict] = None,
config_names: Optional[Union[str, List[str]]] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.annotations_creators = annotations_creators
self.language_creators = language_creators
self.language = language | 3 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
self.license = license
self.multilinguality = multilinguality
self.size_categories = size_categories
self.source_datasets = source_datasets
self.task_categories = task_categories
self.task_ids = task_ids
self.paperswithcode_id = paperswithcode_id
self.pretty_name = pretty_name
self.config_names = config_names | 3 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
# TODO - maybe handle this similarly to EvalResult?
self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
super().__init__(**kwargs)
def _to_dict(self, data_dict):
data_dict["train-eval-index"] = data_dict.pop("train_eval_index") | 3 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
class SpaceCardData(CardData):
"""Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference. | 4 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Args:
title (`str`, *optional*)
Title of the Space.
sdk (`str`, *optional*)
SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`).
sdk_version (`str`, *optional*)
Version of the used SDK (if Gradio/Streamlit sdk).
python_version (`str`, *optional*)
Python version used in the Space (if Gradio/Streamlit sdk).
app_file (`str`, *optional*)
Path to your main application file (which contains either gradio or streamlit Python code, or static html code).
Path is relative to the root of the repository.
app_port (`str`, *optional*)
Port on which your application is running. Used only if sdk is `docker`.
license (`str`, *optional*)
License of this model. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses.
duplicated_from (`str`, *optional*) | 4 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
ID of the original Space if this is a duplicated Space.
models (List[`str`], *optional*)
List of models related to this Space. Should be a dataset ID found on https://hf.co/models.
datasets (`List[str]`, *optional*)
List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets.
tags (`List[str]`, *optional*)
List of tags to add to your Space that can be used when filtering on the Hub.
ignore_metadata_errors (`str`):
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
the process. Use it at your own risk.
kwargs (`dict`, *optional*):
Additional metadata that will be added to the space card. | 4 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
Example:
```python
>>> from huggingface_hub import SpaceCardData
>>> card_data = SpaceCardData(
... title="Dreambooth Training",
... license="mit",
... sdk="gradio",
... duplicated_from="multimodalart/dreambooth-training"
... )
>>> card_data.to_dict()
{'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
```
""" | 4 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
def __init__(
self,
*,
title: Optional[str] = None,
sdk: Optional[str] = None,
sdk_version: Optional[str] = None,
python_version: Optional[str] = None,
app_file: Optional[str] = None,
app_port: Optional[int] = None,
license: Optional[str] = None,
duplicated_from: Optional[str] = None,
models: Optional[List[str]] = None,
datasets: Optional[List[str]] = None,
tags: Optional[List[str]] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.title = title
self.sdk = sdk
self.sdk_version = sdk_version
self.python_version = python_version
self.app_file = app_file
self.app_port = app_port
self.license = license
self.duplicated_from = duplicated_from
self.models = models
self.datasets = datasets
self.tags = _to_unique_list(tags)
super().__init__(**kwargs) | 4 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py |
class BaseModel: # type: ignore [no-redef]
def __init__(self, *args, **kwargs) -> None:
raise ImportError(
"You must have `pydantic` installed to use `WebhookPayload`. This is an optional dependency that"
" should be installed separately. Please run `pip install --upgrade pydantic` and retry."
) | 5 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class ObjectId(BaseModel):
id: str | 6 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadUrl(BaseModel):
web: str
api: Optional[str] = None | 7 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadMovedTo(BaseModel):
name: str
owner: ObjectId | 8 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadWebhook(ObjectId):
version: SupportedWebhookVersion | 9 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadEvent(BaseModel):
action: WebhookEvent_T
scope: str | 10 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadDiscussionChanges(BaseModel):
base: str
mergeCommitId: Optional[str] = None | 11 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadComment(ObjectId):
author: ObjectId
hidden: bool
content: Optional[str] = None
url: WebhookPayloadUrl | 12 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadDiscussion(ObjectId):
num: int
author: ObjectId
url: WebhookPayloadUrl
title: str
isPullRequest: bool
status: DiscussionStatus_T
changes: Optional[WebhookPayloadDiscussionChanges] = None
pinned: Optional[bool] = None | 13 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadRepo(ObjectId):
owner: ObjectId
head_sha: Optional[str] = None
name: str
private: bool
subdomain: Optional[str] = None
tags: Optional[List[str]] = None
type: Literal["dataset", "model", "space"]
url: WebhookPayloadUrl | 14 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayloadUpdatedRef(BaseModel):
ref: str
oldSha: Optional[str] = None
newSha: Optional[str] = None | 15 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class WebhookPayload(BaseModel):
event: WebhookPayloadEvent
repo: WebhookPayloadRepo
discussion: Optional[WebhookPayloadDiscussion] = None
comment: Optional[WebhookPayloadComment] = None
webhook: WebhookPayloadWebhook
movedTo: Optional[WebhookPayloadMovedTo] = None
updatedRefs: Optional[List[WebhookPayloadUpdatedRef]] = None | 16 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py |
class MixinInfo:
model_card_template: str
model_card_data: ModelCardData
repo_url: Optional[str] = None
docs_url: Optional[str] = None | 17 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
class ModelHubMixin:
"""
A generic mixin to integrate ANY machine learning framework with the Hub.
To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models
have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example
of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions.
When inheriting from [`ModelHubMixin`], you can define class-level attributes. These attributes are not passed to
`__init__` but to the class definition itself. This is useful to define metadata about the library integrating
[`ModelHubMixin`].
For more details on how to integrate the mixin with your library, checkout the [integration guide](../guides/integrations). | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Args:
repo_url (`str`, *optional*):
URL of the library repository. Used to generate model card.
docs_url (`str`, *optional*):
URL of the library documentation. Used to generate model card.
model_card_template (`str`, *optional*):
Template of the model card. Used to generate model card. Defaults to a generic template.
language (`str` or `List[str]`, *optional*):
Language supported by the library. Used to generate model card.
library_name (`str`, *optional*):
Name of the library integrating ModelHubMixin. Used to generate model card.
license (`str`, *optional*):
License of the library integrating ModelHubMixin. Used to generate model card.
E.g: "apache-2.0"
license_name (`str`, *optional*):
Name of the library integrating ModelHubMixin. Used to generate model card.
Only used if `license` is set to `other`. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
E.g: "coqui-public-model-license".
license_link (`str`, *optional*):
URL to the license of the library integrating ModelHubMixin. Used to generate model card.
Only used if `license` is set to `other` and `license_name` is set.
E.g: "https://coqui.ai/cpml".
pipeline_tag (`str`, *optional*):
Tag of the pipeline. Used to generate model card. E.g. "text-classification".
tags (`List[str]`, *optional*):
Tags to be added to the model card. Used to generate model card. E.g. ["x-custom-tag", "arxiv:2304.12244"]
coders (`Dict[Type, Tuple[Callable, Callable]]`, *optional*):
Dictionary of custom types and their encoders/decoders. Used to encode/decode arguments that are not
jsonable by default. E.g dataclasses, argparse.Namespace, OmegaConf, etc. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Example:
```python
>>> from huggingface_hub import ModelHubMixin | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Inherit from ModelHubMixin
>>> class MyCustomModel(
... ModelHubMixin,
... library_name="my-library",
... tags=["x-custom-tag", "arxiv:2304.12244"],
... repo_url="https://github.com/huggingface/my-cool-library",
... docs_url="https://huggingface.co/docs/my-cool-library",
... # ^ optional metadata to generate model card
... ):
... def __init__(self, size: int = 512, device: str = "cpu"):
... # define how to initialize your model
... super().__init__()
... ...
...
... def _save_pretrained(self, save_directory: Path) -> None:
... # define how to serialize your model
... ...
...
... @classmethod
... def from_pretrained(
... cls: Type[T],
... pretrained_model_name_or_path: Union[str, Path],
... *,
... force_download: bool = False, | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
... resume_download: Optional[bool] = None,
... proxies: Optional[Dict] = None,
... token: Optional[Union[str, bool]] = None,
... cache_dir: Optional[Union[str, Path]] = None,
... local_files_only: bool = False,
... revision: Optional[str] = None,
... **model_kwargs,
... ) -> T:
... # define how to deserialize your model
... ... | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
>>> model = MyCustomModel(size=256, device="gpu")
# Save model weights to local directory
>>> model.save_pretrained("my-awesome-model")
# Push model weights to the Hub
>>> model.push_to_hub("my-awesome-model")
# Download and initialize weights from the Hub
>>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model")
>>> reloaded_model.size
256
# Model card has been correctly populated
>>> from huggingface_hub import ModelCard
>>> card = ModelCard.load("username/my-awesome-model")
>>> card.data.tags
["x-custom-tag", "pytorch_model_hub_mixin", "model_hub_mixin"]
>>> card.data.library_name
"my-library"
```
""" | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
_hub_mixin_config: Optional[Union[dict, "DataclassInstance"]] = None
# ^ optional config attribute automatically set in `from_pretrained`
_hub_mixin_info: MixinInfo
# ^ information about the library integrating ModelHubMixin (used to generate model card)
_hub_mixin_inject_config: bool # whether `_from_pretrained` expects `config` or not
_hub_mixin_init_parameters: Dict[str, inspect.Parameter] # __init__ parameters
_hub_mixin_jsonable_default_values: Dict[str, Any] # default values for __init__ parameters
_hub_mixin_jsonable_custom_types: Tuple[Type, ...] # custom types that can be encoded/decoded
_hub_mixin_coders: Dict[Type, CODER_T] # encoders/decoders for custom types
# ^ internal values to handle config | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
def __init_subclass__(
cls,
*,
# Generic info for model card
repo_url: Optional[str] = None,
docs_url: Optional[str] = None,
# Model card template
model_card_template: str = DEFAULT_MODEL_CARD,
# Model card metadata
language: Optional[List[str]] = None,
library_name: Optional[str] = None,
license: Optional[str] = None,
license_name: Optional[str] = None,
license_link: Optional[str] = None,
pipeline_tag: Optional[str] = None,
tags: Optional[List[str]] = None,
# How to encode/decode arguments with custom type into a JSON config?
coders: Optional[
Dict[Type, CODER_T]
# Key is a type.
# Value is a tuple (encoder, decoder).
# Example: {MyCustomType: (lambda x: x.value, lambda data: MyCustomType(data))}
] = None,
) -> None:
"""Inspect __init__ signature only once when subclassing + handle modelcard.""" | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
super().__init_subclass__() | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Will be reused when creating modelcard
tags = tags or []
tags.append("model_hub_mixin")
# Initialize MixinInfo if not existent
info = MixinInfo(model_card_template=model_card_template, model_card_data=ModelCardData())
# If parent class has a MixinInfo, inherit from it as a copy
if hasattr(cls, "_hub_mixin_info"):
# Inherit model card template from parent class if not explicitly set
if model_card_template == DEFAULT_MODEL_CARD:
info.model_card_template = cls._hub_mixin_info.model_card_template
# Inherit from parent model card data
info.model_card_data = ModelCardData(**cls._hub_mixin_info.model_card_data.to_dict())
# Inherit other info
info.docs_url = cls._hub_mixin_info.docs_url
info.repo_url = cls._hub_mixin_info.repo_url
cls._hub_mixin_info = info | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Update MixinInfo with metadata
if model_card_template is not None and model_card_template != DEFAULT_MODEL_CARD:
info.model_card_template = model_card_template
if repo_url is not None:
info.repo_url = repo_url
if docs_url is not None:
info.docs_url = docs_url
if language is not None:
info.model_card_data.language = language
if library_name is not None:
info.model_card_data.library_name = library_name
if license is not None:
info.model_card_data.license = license
if license_name is not None:
info.model_card_data.license_name = license_name
if license_link is not None:
info.model_card_data.license_link = license_link
if pipeline_tag is not None:
info.model_card_data.pipeline_tag = pipeline_tag
if tags is not None:
if info.model_card_data.tags is not None: | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
info.model_card_data.tags.extend(tags)
else:
info.model_card_data.tags = tags | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
info.model_card_data.tags = sorted(set(info.model_card_data.tags))
# Handle encoders/decoders for args
cls._hub_mixin_coders = coders or {}
cls._hub_mixin_jsonable_custom_types = tuple(cls._hub_mixin_coders.keys())
# Inspect __init__ signature to handle config
cls._hub_mixin_init_parameters = dict(inspect.signature(cls.__init__).parameters)
cls._hub_mixin_jsonable_default_values = {
param.name: cls._encode_arg(param.default)
for param in cls._hub_mixin_init_parameters.values()
if param.default is not inspect.Parameter.empty and cls._is_jsonable(param.default)
}
cls._hub_mixin_inject_config = "config" in inspect.signature(cls._from_pretrained).parameters
def __new__(cls: Type[T], *args, **kwargs) -> T:
"""Create a new instance of the class and handle config. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
3 cases:
- If `self._hub_mixin_config` is already set, do nothing.
- If `config` is passed as a dataclass, set it as `self._hub_mixin_config`.
- Otherwise, build `self._hub_mixin_config` from default values and passed values.
"""
instance = super().__new__(cls)
# If `config` is already set, return early
if instance._hub_mixin_config is not None:
return instance
# Infer passed values
passed_values = {
**{
key: value
for key, value in zip(
# [1:] to skip `self` parameter
list(cls._hub_mixin_init_parameters)[1:],
args,
)
},
**kwargs,
}
# If config passed as dataclass => set it and return early
if is_dataclass(passed_values.get("config")):
instance._hub_mixin_config = passed_values["config"]
return instance | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Otherwise, build config from default + passed values
init_config = {
# default values
**cls._hub_mixin_jsonable_default_values,
# passed values
**{
key: cls._encode_arg(value) # Encode custom types as jsonable value
for key, value in passed_values.items()
if instance._is_jsonable(value) # Only if jsonable or we have a custom encoder
},
}
passed_config = init_config.pop("config", {})
# Populate `init_config` with provided config
if isinstance(passed_config, dict):
init_config.update(passed_config)
# Set `config` attribute and return
if init_config != {}:
instance._hub_mixin_config = init_config
return instance | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
@classmethod
def _is_jsonable(cls, value: Any) -> bool:
"""Check if a value is JSON serializable."""
if isinstance(value, cls._hub_mixin_jsonable_custom_types):
return True
return is_jsonable(value)
@classmethod
def _encode_arg(cls, arg: Any) -> Any:
"""Encode an argument into a JSON serializable format."""
for type_, (encoder, _) in cls._hub_mixin_coders.items():
if isinstance(arg, type_):
if arg is None:
return None
return encoder(arg)
return arg | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
@classmethod
def _decode_arg(cls, expected_type: Type[ARGS_T], value: Any) -> Optional[ARGS_T]:
"""Decode a JSON serializable value into an argument."""
if is_simple_optional_type(expected_type):
if value is None:
return None
expected_type = unwrap_simple_optional_type(expected_type)
# Dataclass => handle it
if is_dataclass(expected_type):
return _load_dataclass(expected_type, value) # type: ignore[return-value]
# Otherwise => check custom decoders
for type_, (_, decoder) in cls._hub_mixin_coders.items():
if inspect.isclass(expected_type) and issubclass(expected_type, type_):
return decoder(value)
# Otherwise => don't decode
return value | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
def save_pretrained(
self,
save_directory: Union[str, Path],
*,
config: Optional[Union[dict, "DataclassInstance"]] = None,
repo_id: Optional[str] = None,
push_to_hub: bool = False,
model_card_kwargs: Optional[Dict[str, Any]] = None,
**push_to_hub_kwargs,
) -> Optional[str]:
"""
Save weights in local directory. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Args:
save_directory (`str` or `Path`):
Path to directory in which the model weights and configuration will be saved.
config (`dict` or `DataclassInstance`, *optional*):
Model configuration specified as a key/value dictionary or a dataclass instance.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Huggingface Hub after saving it.
repo_id (`str`, *optional*):
ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if
not provided.
model_card_kwargs (`Dict[str, Any]`, *optional*):
Additional arguments passed to the model card template to customize the model card.
push_to_hub_kwargs:
Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method.
Returns: | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
`str` or `None`: url of the commit on the Hub if `push_to_hub=True`, `None` otherwise.
"""
save_directory = Path(save_directory)
save_directory.mkdir(parents=True, exist_ok=True) | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Remove config.json if already exists. After `_save_pretrained` we don't want to overwrite config.json
# as it might have been saved by the custom `_save_pretrained` already. However we do want to overwrite
# an existing config.json if it was not saved by `_save_pretrained`.
config_path = save_directory / constants.CONFIG_NAME
config_path.unlink(missing_ok=True)
# save model weights/files (framework-specific)
self._save_pretrained(save_directory)
# save config (if provided and if not serialized yet in `_save_pretrained`)
if config is None:
config = self._hub_mixin_config
if config is not None:
if is_dataclass(config):
config = asdict(config) # type: ignore[arg-type]
if not config_path.exists():
config_str = json.dumps(config, sort_keys=True, indent=2)
config_path.write_text(config_str) | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# save model card
model_card_path = save_directory / "README.md"
model_card_kwargs = model_card_kwargs if model_card_kwargs is not None else {}
if not model_card_path.exists(): # do not overwrite if already exists
self.generate_model_card(**model_card_kwargs).save(save_directory / "README.md")
# push to the Hub if required
if push_to_hub:
kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input
if config is not None: # kwarg for `push_to_hub`
kwargs["config"] = config
if repo_id is None:
repo_id = save_directory.name # Defaults to `save_directory` name
return self.push_to_hub(repo_id=repo_id, model_card_kwargs=model_card_kwargs, **kwargs)
return None | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
def _save_pretrained(self, save_directory: Path) -> None:
"""
Overwrite this method in subclass to define how to save your model.
Check out our [integration guide](../guides/integrations) for instructions.
Args:
save_directory (`str` or `Path`):
Path to directory in which the model weights and configuration will be saved.
"""
raise NotImplementedError
@classmethod
@validate_hf_hub_args
def from_pretrained(
cls: Type[T],
pretrained_model_name_or_path: Union[str, Path],
*,
force_download: bool = False,
resume_download: Optional[bool] = None,
proxies: Optional[Dict] = None,
token: Optional[Union[str, bool]] = None,
cache_dir: Optional[Union[str, Path]] = None,
local_files_only: bool = False,
revision: Optional[str] = None,
**model_kwargs,
) -> T:
"""
Download a model from the Huggingface Hub and instantiate it. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Args:
pretrained_model_name_or_path (`str`, `Path`):
- Either the `model_id` (string) of a model hosted on the Hub, e.g. `bigscience/bloom`.
- Or a path to a `directory` containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `../path/to/my_model_directory/`.
revision (`str`, *optional*):
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id.
Defaults to the latest commit on `main` branch.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
the existing cache.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on every request.
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
model_kwargs (`Dict`, *optional*):
Additional kwargs to pass to the model during initialization.
"""
model_id = str(pretrained_model_name_or_path)
config_file: Optional[str] = None
if os.path.isdir(model_id):
if constants.CONFIG_NAME in os.listdir(model_id): | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
config_file = os.path.join(model_id, constants.CONFIG_NAME)
else:
logger.warning(f"{constants.CONFIG_NAME} not found in {Path(model_id).resolve()}")
else:
try:
config_file = hf_hub_download(
repo_id=model_id,
filename=constants.CONFIG_NAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
except HfHubHTTPError as e:
logger.info(f"{constants.CONFIG_NAME} not found on the HuggingFace Hub: {str(e)}") | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Read config
config = None
if config_file is not None:
with open(config_file, "r", encoding="utf-8") as f:
config = json.load(f)
# Decode custom types in config
for key, value in config.items():
if key in cls._hub_mixin_init_parameters:
expected_type = cls._hub_mixin_init_parameters[key].annotation
if expected_type is not inspect.Parameter.empty:
config[key] = cls._decode_arg(expected_type, value)
# Populate model_kwargs from config
for param in cls._hub_mixin_init_parameters.values():
if param.name not in model_kwargs and param.name in config:
model_kwargs[param.name] = config[param.name] | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Check if `config` argument was passed at init
if "config" in cls._hub_mixin_init_parameters and "config" not in model_kwargs:
# Decode `config` argument if it was passed
config_annotation = cls._hub_mixin_init_parameters["config"].annotation
config = cls._decode_arg(config_annotation, config)
# Forward config to model initialization
model_kwargs["config"] = config
# Inject config if `**kwargs` are expected
if is_dataclass(cls):
for key in cls.__dataclass_fields__:
if key not in model_kwargs and key in config:
model_kwargs[key] = config[key]
elif any(param.kind == inspect.Parameter.VAR_KEYWORD for param in cls._hub_mixin_init_parameters.values()):
for key, value in config.items():
if key not in model_kwargs:
model_kwargs[key] = value | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Finally, also inject if `_from_pretrained` expects it
if cls._hub_mixin_inject_config and "config" not in model_kwargs:
model_kwargs["config"] = config
instance = cls._from_pretrained(
model_id=str(model_id),
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
**model_kwargs,
)
# Implicitly set the config as instance attribute if not already set by the class
# This way `config` will be available when calling `save_pretrained` or `push_to_hub`.
if config is not None and (getattr(instance, "_hub_mixin_config", None) in (None, {})):
instance._hub_mixin_config = config
return instance | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
@classmethod
def _from_pretrained(
cls: Type[T],
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: Optional[bool],
local_files_only: bool,
token: Optional[Union[str, bool]],
**model_kwargs,
) -> T:
"""Overwrite this method in subclass to define how to load your model from pretrained.
Use [`hf_hub_download`] or [`snapshot_download`] to download files from the Hub before loading them. Most
args taken as input can be directly passed to those 2 methods. If needed, you can add more arguments to this
method using "model_kwargs". For example [`PyTorchModelHubMixin._from_pretrained`] takes as input a `map_location`
parameter to set on which device the model should be loaded.
Check out our [integration guide](../guides/integrations) for more instructions. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Args:
model_id (`str`):
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`).
revision (`str`, *optional*):
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the
latest commit on `main` branch.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
the existing cache.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
model_kwargs:
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method.
"""
raise NotImplementedError | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
@validate_hf_hub_args
def push_to_hub(
self,
repo_id: str,
*,
config: Optional[Union[dict, "DataclassInstance"]] = None,
commit_message: str = "Push model using huggingface_hub.",
private: Optional[bool] = None,
token: Optional[str] = None,
branch: Optional[str] = None,
create_pr: Optional[bool] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
model_card_kwargs: Optional[Dict[str, Any]] = None,
) -> str:
"""
Upload model checkpoint to the Hub.
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
details. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Args:
repo_id (`str`):
ID of the repository to push to (example: `"username/my-model"`).
config (`dict` or `DataclassInstance`, *optional*):
Model configuration specified as a key/value dictionary or a dataclass instance.
commit_message (`str`, *optional*):
Message to commit while pushing.
private (`bool`, *optional*):
Whether the repository created should be private.
If `None` (default), the repo will be public unless the organization's default is private.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`.
branch (`str`, *optional*):
The git branch on which to push the model. This defaults to `"main"`.
create_pr (`boolean`, *optional*): | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`.
allow_patterns (`List[str]` or `str`, *optional*):
If provided, only files matching at least one pattern are pushed.
ignore_patterns (`List[str]` or `str`, *optional*):
If provided, files matching any of the patterns are not pushed.
delete_patterns (`List[str]` or `str`, *optional*):
If provided, remote files matching any of the patterns will be deleted from the repo.
model_card_kwargs (`Dict[str, Any]`, *optional*):
Additional arguments passed to the model card template to customize the model card. | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
Returns:
The url of the commit of your model in the given repository.
"""
api = HfApi(token=token)
repo_id = api.create_repo(repo_id=repo_id, private=private, exist_ok=True).repo_id
# Push the files to the repo in a single commit
with SoftTemporaryDirectory() as tmp:
saved_path = Path(tmp) / repo_id
self.save_pretrained(saved_path, config=config, model_card_kwargs=model_card_kwargs)
return api.upload_folder(
repo_id=repo_id,
repo_type="model",
folder_path=saved_path,
commit_message=commit_message,
revision=branch,
create_pr=create_pr,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
delete_patterns=delete_patterns,
) | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
def generate_model_card(self, *args, **kwargs) -> ModelCard:
card = ModelCard.from_template(
card_data=self._hub_mixin_info.model_card_data,
template_str=self._hub_mixin_info.model_card_template,
repo_url=self._hub_mixin_info.repo_url,
docs_url=self._hub_mixin_info.docs_url,
**kwargs,
)
return card | 18 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
class PyTorchModelHubMixin(ModelHubMixin):
"""
Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model
is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model,
you should first set it back in training mode with `model.train()`.
See [`ModelHubMixin`] for more details on how to use the mixin.
Example:
```python
>>> import torch
>>> import torch.nn as nn
>>> from huggingface_hub import PyTorchModelHubMixin | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
>>> class MyModel(
... nn.Module,
... PyTorchModelHubMixin,
... library_name="keras-nlp",
... repo_url="https://github.com/keras-team/keras-nlp",
... docs_url="https://keras.io/keras_nlp/",
... # ^ optional metadata to generate model card
... ):
... def __init__(self, hidden_size: int = 512, vocab_size: int = 30000, output_size: int = 4):
... super().__init__()
... self.param = nn.Parameter(torch.rand(hidden_size, vocab_size))
... self.linear = nn.Linear(output_size, vocab_size)
... def forward(self, x):
... return self.linear(x + self.param)
>>> model = MyModel(hidden_size=256)
# Save model weights to local directory
>>> model.save_pretrained("my-awesome-model")
# Push model weights to the Hub
>>> model.push_to_hub("my-awesome-model") | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
# Download and initialize weights from the Hub
>>> model = MyModel.from_pretrained("username/my-awesome-model")
>>> model.hidden_size
256
```
"""
def __init_subclass__(cls, *args, tags: Optional[List[str]] = None, **kwargs) -> None:
tags = tags or []
tags.append("pytorch_model_hub_mixin")
kwargs["tags"] = tags
return super().__init_subclass__(*args, **kwargs)
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights from a Pytorch model to a local directory."""
model_to_save = self.module if hasattr(self, "module") else self # type: ignore
save_model_as_safetensor(model_to_save, str(save_directory / constants.SAFETENSORS_SINGLE_FILE)) | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: Optional[bool],
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu",
strict: bool = False,
**model_kwargs,
):
"""Load Pytorch pretrained weights and return the loaded model."""
model = cls(**model_kwargs)
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, constants.SAFETENSORS_SINGLE_FILE)
return cls._load_as_safetensor(model, model_file, map_location, strict)
else:
try:
model_file = hf_hub_download(
repo_id=model_id,
filename=constants.SAFETENSORS_SINGLE_FILE, | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
return cls._load_as_safetensor(model, model_file, map_location, strict)
except EntryNotFoundError:
model_file = hf_hub_download(
repo_id=model_id,
filename=constants.PYTORCH_WEIGHTS_NAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
return cls._load_as_pickle(model, model_file, map_location, strict) | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
@classmethod
def _load_as_pickle(cls, model: T, model_file: str, map_location: str, strict: bool) -> T:
state_dict = torch.load(model_file, map_location=torch.device(map_location), weights_only=True)
model.load_state_dict(state_dict, strict=strict) # type: ignore
model.eval() # type: ignore
return model | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
@classmethod
def _load_as_safetensor(cls, model: T, model_file: str, map_location: str, strict: bool) -> T:
if packaging.version.parse(safetensors.__version__) < packaging.version.parse("0.4.3"): # type: ignore [attr-defined]
load_model_as_safetensor(model, model_file, strict=strict) # type: ignore [arg-type]
if map_location != "cpu":
logger.warning(
"Loading model weights on other devices than 'cpu' is not supported natively in your version of safetensors."
" This means that the model is loaded on 'cpu' first and then copied to the device."
" This leads to a slower loading time."
" Please update safetensors to version 0.4.3 or above for improved performance."
)
model.to(map_location) # type: ignore [attr-defined]
else: | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
safetensors.torch.load_model(model, model_file, strict=strict, device=map_location) # type: ignore [arg-type]
return model | 19 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py |
class WebhooksServer:
"""
The [`WebhooksServer`] class lets you create an instance of a Gradio app that can receive Huggingface webhooks.
These webhooks can be registered using the [`~WebhooksServer.add_webhook`] decorator. Webhook endpoints are added to
the app as a POST endpoint to the FastAPI router. Once all the webhooks are registered, the `launch` method has to be
called to start the app.
It is recommended to accept [`WebhookPayload`] as the first argument of the webhook function. It is a Pydantic
model that contains all the information about the webhook event. The data will be parsed automatically for you.
Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your
WebhooksServer and deploy it on a Space.
<Tip warning={true}>
`WebhooksServer` is experimental. Its API is subject to change in the future.
</Tip>
<Tip warning={true}> | 20 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py |
You must have `gradio` installed to use `WebhooksServer` (`pip install --upgrade gradio`).
</Tip>
Args:
ui (`gradio.Blocks`, optional):
A Gradio UI instance to be used as the Space landing page. If `None`, a UI displaying instructions
about the configured webhooks is created.
webhook_secret (`str`, optional):
A secret key to verify incoming webhook requests. You can set this value to any secret you want as long as
you also configure it in your [webhooks settings panel](https://huggingface.co/settings/webhooks). You
can also set this value as the `WEBHOOK_SECRET` environment variable. If no secret is provided, the
webhook endpoints are opened without any security.
Example:
```python
import gradio as gr
from huggingface_hub import WebhooksServer, WebhookPayload
with gr.Blocks() as ui:
...
app = WebhooksServer(ui=ui, webhook_secret="my_secret_key") | 20 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py |
@app.add_webhook("/say_hello")
async def hello(payload: WebhookPayload):
return {"message": "hello"}
app.launch()
```
"""
def __new__(cls, *args, **kwargs) -> "WebhooksServer":
if not is_gradio_available():
raise ImportError(
"You must have `gradio` installed to use `WebhooksServer`. Please run `pip install --upgrade gradio`"
" first."
)
if not is_fastapi_available():
raise ImportError(
"You must have `fastapi` installed to use `WebhooksServer`. Please run `pip install --upgrade fastapi`"
" first."
)
return super().__new__(cls)
def __init__(
self,
ui: Optional["gr.Blocks"] = None,
webhook_secret: Optional[str] = None,
) -> None:
self._ui = ui | 20 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py |
self.webhook_secret = webhook_secret or os.getenv("WEBHOOK_SECRET")
self.registered_webhooks: Dict[str, Callable] = {}
_warn_on_empty_secret(self.webhook_secret)
def add_webhook(self, path: Optional[str] = None) -> Callable:
"""
Decorator to add a webhook to the [`WebhooksServer`] server.
Args:
path (`str`, optional):
The URL path to register the webhook function. If not provided, the function name will be used as the
path. In any case, all webhooks are registered under `/webhooks`.
Raises:
ValueError: If the provided path is already registered as a webhook.
Example:
```python
from huggingface_hub import WebhooksServer, WebhookPayload
app = WebhooksServer() | 20 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py |
@app.add_webhook
async def trigger_training(payload: WebhookPayload):
if payload.repo.type == "dataset" and payload.event.action == "update":
# Trigger a training job if a dataset is updated
...
app.launch()
```
"""
# Usage: directly as decorator. Example: `@app.add_webhook`
if callable(path):
# If path is a function, it means it was used as a decorator without arguments
return self.add_webhook()(path)
# Usage: provide a path. Example: `@app.add_webhook(...)`
@wraps(FastAPI.post)
def _inner_post(*args, **kwargs):
func = args[0]
abs_path = f"/webhooks/{(path or func.__name__).strip('/')}"
if abs_path in self.registered_webhooks:
raise ValueError(f"Webhook {abs_path} already exists.")
self.registered_webhooks[abs_path] = func
return _inner_post | 20 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py |
def launch(self, prevent_thread_lock: bool = False, **launch_kwargs: Any) -> None:
"""Launch the Gradio app and register webhooks to the underlying FastAPI server.
Input parameters are forwarded to Gradio when launching the app.
"""
ui = self._ui or self._get_default_ui()
# Start Gradio App
# - as non-blocking so that webhooks can be added afterwards
# - as shared if launch locally (to debug webhooks)
launch_kwargs.setdefault("share", _is_local)
self.fastapi_app, _, _ = ui.launch(prevent_thread_lock=True, **launch_kwargs)
# Register webhooks to FastAPI app
for path, func in self.registered_webhooks.items():
# Add secret check if required
if self.webhook_secret is not None:
func = _wrap_webhook_to_check_secret(func, webhook_secret=self.webhook_secret)
# Add route to FastAPI app
self.fastapi_app.post(path)(func) | 20 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py |
# Print instructions and block main thread
space_host = os.environ.get("SPACE_HOST")
url = "https://" + space_host if space_host is not None else (ui.share_url or ui.local_url)
url = url.strip("/")
message = "\nWebhooks are correctly setup and ready to use:"
message += "\n" + "\n".join(f" - POST {url}{webhook}" for webhook in self.registered_webhooks)
message += "\nGo to https://huggingface.co/settings/webhooks to setup your webhooks."
print(message)
if not prevent_thread_lock:
ui.block_thread()
def _get_default_ui(self) -> "gr.Blocks":
"""Default UI if not provided (lists webhooks and provides basic instructions)."""
import gradio as gr | 20 | /Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 12