Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 5,783 Bytes
0129042
 
1191b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0129042
1191b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- en
size_categories:
- 10K<n<100K

configs:
- config_name: dev
  data_files:
  - split: dev.clean
    path: "data/dev.clean/dev.clean*.parquet"
    
- config_name: clean
  data_files:
  - split: dev.clean
    path: "data/dev.clean/dev.clean*.parquet"
  - split: test.clean
    path: "data/test.clean/test.clean*.parquet"
  - split: train.clean.100
    path: "data/train.clean.100/train.clean.100*.parquet"
  - split: train.clean.360'
    path: "data/train.clean.360/train.clean.360*.parquet"
    
- config_name: other
  data_files:
  - split: dev.other
    path: "data/dev.other/dev.other*.parquet"
  - split: test.other
    path: "data/test.other/test.other*.parquet"
  - split: train.other.500
    path: "data/train.other.500/train.other.500*.parquet"
    
- config_name: all
  data_files:
  - split: dev.clean
    path: "data/dev.clean/dev.clean*.parquet"
  - split: dev.other
    path: "data/dev.other/dev.other*.parquet"
  - split: test.clean
    path: "data/test.clean/test.clean*.parquet"
  - split: test.other
    path: "data/test.other/test.other*.parquet"
  - split: train.clean.100
    path: "data/train.clean.100/train.clean.100*.parquet"
  - split: train.clean.360'
    path: "data/train.clean.360/train.clean.360*.parquet"
  - split: train.other.500
    path: "data/train.other.500/train.other.500*.parquet"
---
# Dataset Card for LibriTTS-R

<!-- Provide a quick summary of the dataset. -->

LibriTTS-R [1] is a sound quality improved version of the LibriTTS corpus 
(http://www.openslr.org/60/) which is a multi-speaker English corpus of approximately 
585 hours of read English speech at 24kHz sampling rate, published in 2019.

## Overview

This is the LibriTTS-R dataset, adapted for the `datasets` library.

The dataset viewer does not seem to be functional, although most of the code here was adapted from the `librispeech_asr` dataset.

## Usage

### Splits

There are 7 splits (dots replace dashes from the original dataset, to comply with hf naming requirements):

- dev.clean
- dev.other
- test.clean
- test.other
- train.clean.100
- train.clean.360
- train.other.500

### Configurations

There are 3 configurations, each which limits the splits the `load_dataset()` function will download.

The default configuration is "all".

- "dev": only the "dev.clean" split (good for testing the dataset quickly)
- "clean": contains only "clean" splits
- "other": contains only "other" splits
- "all": contains only "all" splits

### Example

Loading the `clean` config with only the `train.clean.360` split.
```
load_dataset("blabble-io/libritts_r", "clean", split="train.clean.100")
```

Streaming is also supported.
```
load_dataset("blabble-io/libritts_r", streaming=True)
```

### Columns

```
{
    "audio": datasets.Audio(sampling_rate=24_000),
    "text_normalized": datasets.Value("string"),
    "text_original": datasets.Value("string"),
    "speaker_id": datasets.Value("string"),
    "path": datasets.Value("string"),
    "chapter_id": datasets.Value("string"),
    "id": datasets.Value("string"),
}
```

### Example Row

```
{
  'audio': {
    'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav', 
    'array': ..., 
    'sampling_rate': 24000
  }, 
  'text_normalized': 'How quickly he disappeared!"',
  'text_original': 'How quickly he disappeared!"',
  'speaker_id': '3081', 
  'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav', 
  'chapter_id': '166546', 
  'id': '3081_166546_000028_000002'
}
```

## Dataset Details

### Dataset Description

- **License:** CC BY 4.0

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Homepage:** https://www.openslr.org/141/
- **Paper:** https://arxiv.org/abs/2305.18802

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

```
@ARTICLE{Koizumi2023-hs,
  title         = "{LibriTTS-R}: A restored multi-speaker text-to-speech corpus",
  author        = "Koizumi, Yuma and Zen, Heiga and Karita, Shigeki and Ding,
                   Yifan and Yatabe, Kohei and Morioka, Nobuyuki and Bacchiani,
                   Michiel and Zhang, Yu and Han, Wei and Bapna, Ankur",
  abstract      = "This paper introduces a new speech dataset called
                   ``LibriTTS-R'' designed for text-to-speech (TTS) use. It is
                   derived by applying speech restoration to the LibriTTS
                   corpus, which consists of 585 hours of speech data at 24 kHz
                   sampling rate from 2,456 speakers and the corresponding
                   texts. The constituent samples of LibriTTS-R are identical
                   to those of LibriTTS, with only the sound quality improved.
                   Experimental results show that the LibriTTS-R ground-truth
                   samples showed significantly improved sound quality compared
                   to those in LibriTTS. In addition, neural end-to-end TTS
                   trained with LibriTTS-R achieved speech naturalness on par
                   with that of the ground-truth samples. The corpus is freely
                   available for download from
                   \textbackslashurl\{http://www.openslr.org/141/\}.",
  month         =  may,
  year          =  2023,
  copyright     = "http://creativecommons.org/licenses/by-nc-nd/4.0/",
  archivePrefix = "arXiv",
  primaryClass  = "eess.AS",
  eprint        = "2305.18802"
}
```