Datasets:
File size: 5,783 Bytes
0129042 1191b34 0129042 1191b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- en
size_categories:
- 10K<n<100K
configs:
- config_name: dev
data_files:
- split: dev.clean
path: "data/dev.clean/dev.clean*.parquet"
- config_name: clean
data_files:
- split: dev.clean
path: "data/dev.clean/dev.clean*.parquet"
- split: test.clean
path: "data/test.clean/test.clean*.parquet"
- split: train.clean.100
path: "data/train.clean.100/train.clean.100*.parquet"
- split: train.clean.360'
path: "data/train.clean.360/train.clean.360*.parquet"
- config_name: other
data_files:
- split: dev.other
path: "data/dev.other/dev.other*.parquet"
- split: test.other
path: "data/test.other/test.other*.parquet"
- split: train.other.500
path: "data/train.other.500/train.other.500*.parquet"
- config_name: all
data_files:
- split: dev.clean
path: "data/dev.clean/dev.clean*.parquet"
- split: dev.other
path: "data/dev.other/dev.other*.parquet"
- split: test.clean
path: "data/test.clean/test.clean*.parquet"
- split: test.other
path: "data/test.other/test.other*.parquet"
- split: train.clean.100
path: "data/train.clean.100/train.clean.100*.parquet"
- split: train.clean.360'
path: "data/train.clean.360/train.clean.360*.parquet"
- split: train.other.500
path: "data/train.other.500/train.other.500*.parquet"
---
# Dataset Card for LibriTTS-R
<!-- Provide a quick summary of the dataset. -->
LibriTTS-R [1] is a sound quality improved version of the LibriTTS corpus
(http://www.openslr.org/60/) which is a multi-speaker English corpus of approximately
585 hours of read English speech at 24kHz sampling rate, published in 2019.
## Overview
This is the LibriTTS-R dataset, adapted for the `datasets` library.
The dataset viewer does not seem to be functional, although most of the code here was adapted from the `librispeech_asr` dataset.
## Usage
### Splits
There are 7 splits (dots replace dashes from the original dataset, to comply with hf naming requirements):
- dev.clean
- dev.other
- test.clean
- test.other
- train.clean.100
- train.clean.360
- train.other.500
### Configurations
There are 3 configurations, each which limits the splits the `load_dataset()` function will download.
The default configuration is "all".
- "dev": only the "dev.clean" split (good for testing the dataset quickly)
- "clean": contains only "clean" splits
- "other": contains only "other" splits
- "all": contains only "all" splits
### Example
Loading the `clean` config with only the `train.clean.360` split.
```
load_dataset("blabble-io/libritts_r", "clean", split="train.clean.100")
```
Streaming is also supported.
```
load_dataset("blabble-io/libritts_r", streaming=True)
```
### Columns
```
{
"audio": datasets.Audio(sampling_rate=24_000),
"text_normalized": datasets.Value("string"),
"text_original": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"chapter_id": datasets.Value("string"),
"id": datasets.Value("string"),
}
```
### Example Row
```
{
'audio': {
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'array': ...,
'sampling_rate': 24000
},
'text_normalized': 'How quickly he disappeared!"',
'text_original': 'How quickly he disappeared!"',
'speaker_id': '3081',
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'chapter_id': '166546',
'id': '3081_166546_000028_000002'
}
```
## Dataset Details
### Dataset Description
- **License:** CC BY 4.0
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Homepage:** https://www.openslr.org/141/
- **Paper:** https://arxiv.org/abs/2305.18802
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
```
@ARTICLE{Koizumi2023-hs,
title = "{LibriTTS-R}: A restored multi-speaker text-to-speech corpus",
author = "Koizumi, Yuma and Zen, Heiga and Karita, Shigeki and Ding,
Yifan and Yatabe, Kohei and Morioka, Nobuyuki and Bacchiani,
Michiel and Zhang, Yu and Han, Wei and Bapna, Ankur",
abstract = "This paper introduces a new speech dataset called
``LibriTTS-R'' designed for text-to-speech (TTS) use. It is
derived by applying speech restoration to the LibriTTS
corpus, which consists of 585 hours of speech data at 24 kHz
sampling rate from 2,456 speakers and the corresponding
texts. The constituent samples of LibriTTS-R are identical
to those of LibriTTS, with only the sound quality improved.
Experimental results show that the LibriTTS-R ground-truth
samples showed significantly improved sound quality compared
to those in LibriTTS. In addition, neural end-to-end TTS
trained with LibriTTS-R achieved speech naturalness on par
with that of the ground-truth samples. The corpus is freely
available for download from
\textbackslashurl\{http://www.openslr.org/141/\}.",
month = may,
year = 2023,
copyright = "http://creativecommons.org/licenses/by-nc-nd/4.0/",
archivePrefix = "arXiv",
primaryClass = "eess.AS",
eprint = "2305.18802"
}
``` |