File size: 3,433 Bytes
4e2774d
bda16b5
4e2774d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda16b5
4e2774d
 
 
 
 
 
 
bda16b5
4e2774d
 
 
 
 
 
 
 
 
 
 
 
 
bda16b5
4e2774d
 
 
bda16b5
 
 
 
 
 
 
 
4e2774d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda16b5
4e2774d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda16b5
4e2774d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
task_categories:
- text-to-speech
- text-to-audio
- automatic-speech-recognition

language:
- en

size_categories:
- 10K<n<100K

configs:
- config_name: small
  data_files:
  - split: train
    path: "data/small/train/train*.parquet"
    
---
# Dataset Card for Libriheavy-HQ

WIP: This is still a WIP, check back later.

<!-- Provide a quick summary of the dataset. -->

[Libriheavy](https://huggingface.co/datasets/pkufool/libriheavy): a 50,000 hours ASR corpus with punctuation casing 
and context. Libriheavy is a labeled version of Libri-Light.
 
Libriheavy-HQ replaces the default Libri-Light audio files with the highest quality available versions from librivox 
without re-encoding them. 

In most cases, this consists an upgrade of the source audio from a 64kbps .mp3 to a 128kbps .mp3.

## Overview

This is the Libriheavy-HQ dataset, adapted for the `datasets` library.

## Usage

### Subsets

Currently, only the "small" subset of [Libriheavy](https://huggingface.co/datasets/pkufool/libriheavy) is available.

In the future, all listed subsets will be available.

The default configuration is "small".

- "small": 509 hours of speech. 417 speakers averaging 1.22 hours per speaker.
- "medium": 5042 hours of speech. 1531 speakers averaging 3.29 hours per speaker.
- "large": 50794 hours of speech. 6736 speakers averaging 7.54 hours per speaker.
- "dev": 22.3 hours of speech. 141 speakers averaging 0.16 hours per speaker.
- "test.clean": 10.5 hours of speech. 70 speakers averaging 0.15 hours per speaker.
- "test.other": 11.5 hours of speech. 72 speakers averaging 0.16 hours per speaker.
- "test.clean.large": 107.5 hours of speech. 72 speakers averaging 1.49 hours per speaker.
- "test.other.large": 100.3 hours of speech. 73 speakers averaging 1.37 hours per speaker.

### Example

Loading the `small` config with only the `train` split.
```
load_dataset("mythicinfinity/libriheavy-hq", "small", split="train")
```

Streaming is also supported.
```
load_dataset("mythicinfinity/libriheavy-hq", streaming=True)
```

### Columns

```
{
    "id": datasets.Value("string"),
    "speaker_id": datasets.Value("string"),
    "audio": datasets.Audio(sampling_rate=44_100, mono=True),
    "audio_duration": datasets.Value("float32"),
    "text_original": datasets.Value("string"),
    "text_transcription": datasets.Value("string"),
    "librivox_book_id": datasets.Value("string"),
}
```

## Dataset Details

### Dataset Description

- **Libriheavy License:** Apache 2.0

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Libriheavy Homepage:** https://github.com/k2-fsa/libriheavy
- **Libriheavy Paper:** https://arxiv.org/abs/2309.08105

## Citations

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

```
@misc{Thornbury2024LibriheavyHQ,
	author = {{Thornbury, Bryan and Mythic Infinity Labs}},
	title = {{Libriheavy-HQ}},
	year = {2024},
	url = {https://huggingface.co/datasets/mythicinfinity/libriheavy-hq},
}

@misc{kang2023libriheavy,
      title={Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context}, 
      author={Wei Kang and Xiaoyu Yang and Zengwei Yao and Fangjun Kuang and Yifan Yang and Liyong Guo and Long Lin and Daniel Povey},
      year={2023},
      eprint={2309.08105},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
```