Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
Libraries:
Datasets
pandas
query-id
stringlengths
5
5
corpus-id
stringlengths
10
10
score
float64
1
1
00000
FCIX3BYOtD
1
00000
YsP6ihgIqL
1
00001
QMgV0Lh8Wv
1
00001
0pKGytvukF
1
00002
3UDqpNVGMr
1
00003
ZDYUvh7i71
1
00004
tST18iwItC
1
00004
efQrSO42uK
1
00004
gMXAdx9G81
1
00004
r4Eh0C3BfQ
1
00004
PNLbWphJeV
1
00005
QR6FEecAtp
1
00005
50OXirZRiR
1
00005
18Y2bTu5X1
1
00005
qWCA79ISjs
1
00006
JHS64k2k59
1
00007
pkObaWoukd
1
00007
CtlRJoWcUR
1
00007
NbrnTP3fAb
1
00008
rsK9EjHvIH
1
00008
DmH5RiMKpP
1
00009
JLQ6xVJGyO
1
00009
UMVmI5BRh8
1
00009
B19sMLT6mn
1
00010
2qFl41sNLj
1
00010
8EE5GXTeLY
1
00011
ILft9SGVZe
1
00012
GCLgR0OVSn
1
00012
5eZffTYIKI
1
00012
YqWg21nYCs
1
00013
4efLerNHu9
1
00014
JLQ6xVJGyO
1
00015
6UmFFciuDC
1
00015
DIq2AnHTmt
1
00016
9NIQ0Wobtq
1
00016
n62tOy4Cqp
1
00016
gAk7Gdp0CX
1
00017
RBT7qYHDBT
1
00018
TtLFxJpRa5
1
00018
ArQEPcyLas
1
00018
08YMNb5Zql
1
00018
6JDWYlgAAC
1
00019
P9K63LSFZH
1
00019
NJOVzNEMr7
1
00020
BnD3XkfFNu
1
00020
nnBbuQzkCh
1
00020
9s8OrJQUdL
1
00020
tUeC99enq5
1
00021
Y7gbtP7ySe
1
00021
SstzyshA6P
1
00022
xavU07zUHL
1
00022
ZESFqZ8pIx
1
00023
YxPY8EcFK1
1
00024
AwFv0Yg7NZ
1
00024
uQO001xtSV
1
00024
q0Zf2pCLxb
1
00024
2BGCSzOjD8
1
00024
850kEnydx9
1
00024
FVr9Qh8yXv
1
00025
uPGtk4vvVS
1
00025
SmNqE40fAr
1
00025
JnOng0wVJY
1
00025
4HZKjht3X1
1
00025
phlhHVlnES
1
00025
HtYDZw69Cr
1
00025
8JHUdKF0j7
1
00025
Rtva1JyiNb
1
00026
r9HE60Dlgk
1
00026
OjkeaBKsoR
1
00026
zKG5mSoyPs
1
00026
S87XwXaHCP
1
00026
kWCRNYdWCs
1
00027
u8zF9OHzlw
1
00027
ndZ4szi6sE
1
00028
6jOSL0IZbc
1
00028
XRvj7uff0L
1
00028
ZXe1cb51JJ
1
00028
RCQ5WMO5AH
1
00028
YUPnmbpD0e
1
00028
BGjxrzuLWO
1
00028
TtLFxJpRa5
1
00028
MM0jQb6gbt
1
00028
5F21rWz5FY
1
00028
gQH8wylh0C
1
00028
P1uRr6YICt
1
00028
jMPqPEBqUh
1
00028
8Y7XsrSvBp
1
00028
8GrgmolaHr
1
00028
sUkiH8G4Zp
1
00028
OZM4OtBJTf
1
00028
7nvdE2ODH0
1
00028
30pNIhsHFk
1
00028
8NBQv2WNl7
1
00028
nipuaUkxRF
1
00028
hF4vTYYojm
1
00028
Is9hVLXnGB
1
00029
MbyIbNiCdx
1
00029
A4dhjkuRv6
1
00029
cmc5F9HpUl
1
00029
2ceN59UAgN
1

AILA_casedocs

  • Original link: https://zenodo.org/records/4063986
  • The task is to retrieve the case document that most closely matches or is most relevant to the scenario described in the provided query.
  • The query set comprises 50 queries, each describing a specific situation.
  • The corpus set consists of case documents.

Usage

import datasets

# Download the dataset
queries = datasets.load_dataset("mteb/AILA_casedocs", "queries")
documents = datasets.load_dataset("mteb/AILA_casedocs", "corpus")
pair_labels = datasets.load_dataset("mteb/AILA_casedocs", "default")
Downloads last month
486
Edit dataset card