File size: 3,885 Bytes
3b6adfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f1806a
 
 
 
3b6adfd
 
 
8f1806a
 
 
 
3b6adfd
 
 
8f1806a
 
 
 
3b6adfd
 
 
8f1806a
 
 
 
3b6adfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")


DESCRIPTION = "Iris efficiency dataset from the UCI repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/53/iris"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/53/iris")
_CITATION = """
@misc{misc_iris_53,
  author       = {Fisher,R. A. & Fisher,R.A.},
  title        = {{Iris}},
  year         = {1988},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C56C76}}
}"""

# Dataset info
_BASE_FEATURE_NAMES = [
	"sepal_length",
	"sepal_width",
	"petal_length",
	"petal_width",
	"class"
]
urls_per_split = {
	"train": "https://huggingface.co/datasets/mstz/iris/raw/main/iris.data"
}
features_types_per_config = {
	"iris": {
		"sepal_length": datasets.Value("float64"),
		"sepal_width": datasets.Value("float64"),
		"petal_length": datasets.Value("float64"),
		"petal_width": datasets.Value("float64"),
		"class": datasets.ClassLabel(num_classes=3, names=("setosa", "versicolor", "virginica"))
	},
	"setosa": {
		"sepal_length": datasets.Value("float64"),
		"sepal_width": datasets.Value("float64"),
		"petal_length": datasets.Value("float64"),
		"petal_width": datasets.Value("float64"),
		"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
	},
	"versicolor": {
		"sepal_length": datasets.Value("float64"),
		"sepal_width": datasets.Value("float64"),
		"petal_length": datasets.Value("float64"),
		"petal_width": datasets.Value("float64"),
		"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
	},
	"virginica": {
		"sepal_length": datasets.Value("float64"),
		"sepal_width": datasets.Value("float64"),
		"petal_length": datasets.Value("float64"),
		"petal_width": datasets.Value("float64"),
		"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
	}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class IrisConfig(datasets.BuilderConfig):
	def __init__(self, **kwargs):
		super(IrisConfig, self).__init__(version=VERSION, **kwargs)
		self.features = features_per_config[kwargs["name"]]


class Iris(datasets.GeneratorBasedBuilder):
	# dataset versions
	DEFAULT_CONFIG = "iris"
	BUILDER_CONFIGS = [
		IrisConfig(name="iris", description="Iris dataset."),
		IrisConfig(name="setosa", description="Binary classification of setosa."),
		IrisConfig(name="versicolor", description="Binary classification of versicolor."),
		IrisConfig(name="virginica", description="Binary classification of virginica.")		
	]


	def _info(self):       
		info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
									features=features_per_config[self.config.name])

		return info
	
	def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
		downloads = dl_manager.download_and_extract(urls_per_split)

		return [
			datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
		]
	
	def _generate_examples(self, filepath: str):
		data = pandas.read_csv(filepath, header=None)
		data = self.preprocess(data)

		for row_id, row in data.iterrows():
			data_row = dict(row)

			yield row_id, data_row
	
	def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
		data.columns = _BASE_FEATURE_NAMES
		data.loc[:, "class"] = data["class"].apply(lambda x: {
			"Iris-setosa": 0,
			"Iris-versicolor": 1,
			"Iris-virginica": 2
		}[x])
		

		if self.config.name == "setosa":
			data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
		elif self.config.name == "versicolor":
			data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
		if self.config.name == "virginica":
			data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)

		return data