Datasets:
File size: 6,639 Bytes
558be89 2f8fe8f 558be89 58df4ea d565e38 58df4ea 558be89 58df4ea 558be89 58df4ea 558be89 58df4ea 558be89 58df4ea 558be89 58df4ea 558be89 58df4ea 558be89 58df4ea a06638a bacaae8 b74785a 58df4ea 3bee266 bacaae8 58df4ea 3bee266 bacaae8 58df4ea a06638a bacaae8 58df4ea 3bee266 bacaae8 58df4ea 2f8fe8f 558be89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
DESCRIPTION = "Glass efficiency dataset from the UCI repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/242/glass+efficiency"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/30/glass+method+choice")
_CITATION = """
@misc{misc_glass_efficiency_242,
author = {Tsanas,Athanasios & Xifara,Angeliki},
title = {{Glass efficiency}},
year = {2012},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C51307}}
}"""
# Dataset info
_BASE_FEATURE_NAMES = [
"refractive_index",
"sodium",
"magnesium",
"aluminum",
"silicon",
"potassium",
"calcium",
"barium",
"iron",
"glass_type",
]
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/glass/raw/main/glass.data"
}
features_types_per_config = {
"glass": {
"refractive_index": datasets.Value("float64"),
"sodium": datasets.Value("float64"),
"magnesium": datasets.Value("float64"),
"aluminum": datasets.Value("float64"),
"silicon": datasets.Value("float64"),
"potassium": datasets.Value("float64"),
"calcium": datasets.Value("float64"),
"barium": datasets.Value("int8"),
"iron": datasets.Value("float64"),
"glass_type": datasets.ClassLabel(num_classes=7, names=("windows_1", "windows_2",
"vehicle_windows_1", "vehicle_windows_2",
"containers", "tableware", "headlamps"))
},
"windows": {
"refractive_index": datasets.Value("float64"),
"sodium": datasets.Value("float64"),
"magnesium": datasets.Value("float64"),
"aluminum": datasets.Value("float64"),
"silicon": datasets.Value("float64"),
"potassium": datasets.Value("float64"),
"calcium": datasets.Value("float64"),
"barium": datasets.Value("int8"),
"iron": datasets.Value("float64"),
"is_windows_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"vehicles": {
"refractive_index": datasets.Value("float64"),
"sodium": datasets.Value("float64"),
"magnesium": datasets.Value("float64"),
"aluminum": datasets.Value("float64"),
"silicon": datasets.Value("float64"),
"potassium": datasets.Value("float64"),
"calcium": datasets.Value("float64"),
"barium": datasets.Value("int8"),
"iron": datasets.Value("float64"),
"is_vehicle_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"containers": {
"refractive_index": datasets.Value("float64"),
"sodium": datasets.Value("float64"),
"magnesium": datasets.Value("float64"),
"aluminum": datasets.Value("float64"),
"silicon": datasets.Value("float64"),
"potassium": datasets.Value("float64"),
"calcium": datasets.Value("float64"),
"barium": datasets.Value("int8"),
"iron": datasets.Value("float64"),
"is_container_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"tableware": {
"refractive_index": datasets.Value("float64"),
"sodium": datasets.Value("float64"),
"magnesium": datasets.Value("float64"),
"aluminum": datasets.Value("float64"),
"silicon": datasets.Value("float64"),
"potassium": datasets.Value("float64"),
"calcium": datasets.Value("float64"),
"barium": datasets.Value("int8"),
"iron": datasets.Value("float64"),
"is_tableware_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"headlamps": {
"refractive_index": datasets.Value("float64"),
"sodium": datasets.Value("float64"),
"magnesium": datasets.Value("float64"),
"aluminum": datasets.Value("float64"),
"silicon": datasets.Value("float64"),
"potassium": datasets.Value("float64"),
"calcium": datasets.Value("float64"),
"barium": datasets.Value("int8"),
"iron": datasets.Value("float64"),
"is_headlamp_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class GlassConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(GlassConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Glass(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "glass"
BUILDER_CONFIGS = [
GlassConfig(name="glass", description="Glass dataset."),
GlassConfig(name="windows", description="Is this windows glass?"),
GlassConfig(name="vehicles", description="Is this vehicles glass?"),
GlassConfig(name="containers", description="Is this containers glass?"),
GlassConfig(name="tableware", description="Is this tableware glass?"),
GlassConfig(name="headlamps", description="Is this headlamps glass?")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data = self.preprocess(data)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
data.columns = _BASE_FEATURE_NAMES
if self.config.name == "windows":
data = data.rename(columns={"glass_type": "is_windows_glass"})
data.loc[:, "is_windows_glass"] = data.is_windows_glass.apply(lambda x: 1 if x == 1 or x == 2 else 0)
elif self.config.name == "vehicles":
data = data.rename(columns={"glass_type": "is_vehicle_glass"})
data.loc[:, "is_vehicle_glass"] = data.is_vehicle_glass.apply(lambda x: 1 if x in {3, 4} else 0)
elif self.config.name == "containers":
data = data.rename(columns={"glass_type": "is_container_glass"})
data.loc[:, "is_container_glass"] = data.is_container_glass.apply(lambda x: 1 if x == 5 else 0)
elif self.config.name == "tableware":
data = data.rename(columns={"glass_type": "is_tableware_glass"})
data.loc[:, "is_tableware_glass"] = data.is_tableware_glass.apply(lambda x: 1 if x == 6 else 0)
elif self.config.name == "headlamps":
data = data.rename(columns={"glass_type": "is_headlamp_glass"})
data.loc[:, "is_headlamp_glass"] = data.is_headlamp_glass.apply(lambda x: 1 if x == 7 else 0)
else:
data.loc[:, "glass_type"] = data.glass_type.apply(lambda x: x - 1)
print(data.glass_type.unique())
return data
|