File size: 7,686 Bytes
59f5aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from scipy.io import wavfile
from fairseq import checkpoint_utils
from lib.audio import load_audio
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from vc_infer_pipeline import VC
from multiprocessing import cpu_count
import numpy as np
import torch
import sys
import glob
import argparse
import os
import sys
import pdb
import torch

now_dir = os.getcwd()
sys.path.append(now_dir)

####
# USAGE
#
# In your Terminal or CMD or whatever
# python infer_cli.py [TRANSPOSE_VALUE] "[INPUT_PATH]" "[OUTPUT_PATH]" "[MODEL_PATH]" "[INDEX_FILE_PATH]" "[INFERENCE_DEVICE]" "[METHOD]"

using_cli = False
device = "cuda:0"
is_half = False

if len(sys.argv) > 0:
    f0_up_key = int(sys.argv[1])  # transpose value
    input_path = sys.argv[2]
    output_path = sys.argv[3]
    model_path = sys.argv[4]
    file_index = sys.argv[5]  # .index file
    device = sys.argv[6]
    f0_method = sys.argv[7]  # pm or harvest or crepe

    using_cli = True

    # file_index2=sys.argv[8]
    # index_rate=float(sys.argv[10]) #search feature ratio
    # filter_radius=float(sys.argv[11]) #median filter
    # resample_sr=float(sys.argv[12]) #resample audio in post processing
    # rms_mix_rate=float(sys.argv[13]) #search feature
    print(sys.argv)


class Config:
    def __init__(self, device, is_half):
        self.device = device
        self.is_half = is_half
        self.n_cpu = 0
        self.gpu_name = None
        self.gpu_mem = None
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    def device_config(self) -> tuple:
        if torch.cuda.is_available() and device != "cpu":
            i_device = int(self.device.split(":")[-1])
            self.gpu_name = torch.cuda.get_device_name(i_device)
            if (
                ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
                or "P40" in self.gpu_name.upper()
                or "1060" in self.gpu_name
                or "1070" in self.gpu_name
                or "1080" in self.gpu_name
            ):
                print("16系/10系显卡和P40强制单精度")
                self.is_half = False
                for config_file in ["32k.json", "40k.json", "48k.json"]:
                    with open(f"configs/{config_file}", "r") as f:
                        strr = f.read().replace("true", "false")
                    with open(f"configs/{config_file}", "w") as f:
                        f.write(strr)
                with open("trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open("trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)
            else:
                self.gpu_name = None
            self.gpu_mem = int(
                torch.cuda.get_device_properties(i_device).total_memory
                / 1024
                / 1024
                / 1024
                + 0.4
            )
            if self.gpu_mem <= 4:
                with open("trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open("trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)
        elif torch.backends.mps.is_available():
            print("没有发现支持的N卡, 使用MPS进行推理")
            self.device = "mps"
        else:
            print("没有发现支持的N卡, 使用CPU进行推理")
            self.device = "cpu"
            self.is_half = False

        if self.n_cpu == 0:
            self.n_cpu = cpu_count()

        if self.is_half:
            # 6G显存配置
            x_pad = 3
            x_query = 10
            x_center = 60
            x_max = 65
        else:
            # 5G显存配置
            x_pad = 1
            x_query = 6
            x_center = 38
            x_max = 41

        if self.gpu_mem != None and self.gpu_mem <= 4:
            x_pad = 1
            x_query = 5
            x_center = 30
            x_max = 32

        return x_pad, x_query, x_center, x_max


config = Config(device, is_half)
now_dir = os.getcwd()
sys.path.append(now_dir)

hubert_model = None


def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()


def vc_single(
    sid=0,
    input_audio_path=None,
    f0_up_key=0,
    f0_file=None,
    f0_method="pm",
    file_index="",  # .index file
    file_index2="",
    # file_big_npy,
    index_rate=1.0,
    filter_radius=3,
    resample_sr=0,
    rms_mix_rate=1.0,
    model_path="",
    output_path="",
    protect=0.33,
):
    global tgt_sr, net_g, vc, hubert_model, version
    get_vc(model_path)
    if input_audio_path is None:
        return "You need to upload an audio file", None

    f0_up_key = int(f0_up_key)
    audio = load_audio(input_audio_path, 16000)
    audio_max = np.abs(audio).max() / 0.95

    if audio_max > 1:
        audio /= audio_max
    times = [0, 0, 0]

    if hubert_model == None:
        load_hubert()

    if_f0 = cpt.get("f0", 1)

    file_index = (
        (
            file_index.strip(" ")
            .strip('"')
            .strip("\n")
            .strip('"')
            .strip(" ")
            .replace("trained", "added")
        )
        if file_index != ""
        else file_index2
    )

    audio_opt = vc.pipeline(
        hubert_model,
        net_g,
        sid,
        audio,
        input_audio_path,
        times,
        f0_up_key,
        f0_method,
        file_index,
        # file_big_npy,
        index_rate,
        if_f0,
        filter_radius,
        tgt_sr,
        resample_sr,
        rms_mix_rate,
        version,
        f0_file=f0_file,
        protect=protect,
    )
    wavfile.write(output_path, tgt_sr, audio_opt)
    return "processed"


def get_vc(model_path):
    global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version
    print("loading pth %s" % model_path)
    cpt = torch.load(model_path, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(device)
    if is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]
    # return {"visible": True,"maximum": n_spk, "__type__": "update"}


if using_cli:
    vc_single(
        sid=0,
        input_audio_path=input_path,
        f0_up_key=f0_up_key,
        f0_file=None,
        f0_method=f0_method,
        file_index=file_index,
        file_index2="",
        index_rate=1,
        filter_radius=3,
        resample_sr=0,
        rms_mix_rate=0,
        model_path=model_path,
        output_path=output_path,
    )