File size: 9,505 Bytes
7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 e8ad6e5 7e334b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
language: [en]
license: mit
datasets: [MobileViews]
pretty_name: "MobileViews: A Large-Scale Mobile GUI Dataset"
tags:
- mobile-ui
- user-interfaces
- view-hierarchy
- android-apps
- screenshots
task_categories:
- question-answering
- image-to-text
task_ids:
- task-planning
- visual-question-answering
---
# MobileViews: A Large-Scale Mobile GUI Dataset
[**Read the paper**](https://arxiv.org/abs/2409.14337)
**MobileViews** is a large-scale dataset designed to support research on mobile user interface (UI) analysis and mobile agents. The first version — **MobileViews-600K** — contains over **600,000** mobile UI screenshot-view hierarchy (VH) pairs, collected from approximately **20,000 apps** on the Google Play Store.
## Dataset Overview
The `zip` and `parquet` files with the same index contain the same screenshots and VH files, so you can choose whichever format you prefer to download and use.
- **`MobileViews_0-150000.zip`**, **`MobileViews_0-150000.parquet`** and **`MobileViews_index_0-150000.csv`**: The first set of screenshot-VH pairs, containing IDs from 0 to 150,000.
- **`MobileViews_150001-291197.zip`**, **`MobileViews_150001-291197.parquet`** and **`MobileViews_index_150001-291197.csv`**: The second set of screenshot-VH pairs, containing IDs from 150,001 to 291,197.
- **`MobileViews_300000-400000.zip`**, **`MobileViews_300000-400000.parquet`** and **`MobileViews_index_300000-400000.csv`**: The third set of screenshot-VH pairs, containing IDs from 300,000 to 400,000.
- **`MobileViews_400001-522301.zip`**, **`MobileViews_400001-522301.parquet`** and **`MobileViews_index_400001-522301.csv`**: The fourth set of screenshot-VH pairs, containing IDs from 400,001 to 522,301.
- **`AppMetadata.csv`**: Metadata for **15,000 apps** from the Google Play Store, retrieved in **June 2024**.
### CSV and Parquet Column Descriptions
Both the CSV and Parquet files provide mappings between images and JSON view hierarchy files.
1. **CSV Columns**
| Column | Description |
|--------------|-------------------------------------------|
| `Image File` | Filename of the screenshot (e.g., 0.jpg) |
| `JSON File` | Filename of the view hierarchy (e.g., 0.json) |
**Example:**
```csv
Image File,JSON File
300000.jpg,300000.json
300001.jpg,300001.json
300002.jpg,300002.json
```
Here’s the updated section of the README for the MobileViews open-sourced dataset, modified to reflect that the Parquet columns are `image_content` and `json_content` instead of `image_path`:
---
2. **Parquet Columns**
| Column | Description |
|-----------------|--------------------------------------------------------------------------|
| `image_content` | Binary data representing the image file (e.g., screenshot in `.jpg` format) |
| `json_content` | JSON content representing the view hierarchy for the corresponding image |
**Example Data in Parquet:**
| image_content | json_content |
|------------------------|----------------------------------------------------------------------|
| Binary image data | `{"viewHierarchy": {"bounds": [0, 0, 1080, 1920], "viewClass": ...}` |
| Binary image data | `{"viewHierarchy": {"bounds": [0, 0, 1080, 1920], "viewClass": ...}` |
| Binary image data | `{"viewHierarchy": {"bounds": [0, 0, 1080, 1920], "viewClass": ...}` |
The **`image_content`** column contains the binary image data for each screenshot, which can be converted back into a `.jpg` image. The **`json_content`** column stores the JSON string with the view hierarchy details for each corresponding image.
### AppMetadata.csv Columns
The `AppMetadata.csv` file contains detailed information about each app. The columns are as follows:
| Column | Description |
|---------------------|------------------------------------------------------------------|
| `title` | App title |
| `installs` | Number of installs |
| `minInstalls` | Minimum number of installs |
| `realInstalls` | Real number of installs |
| `score` | App score (rating) |
| `ratings` | Number of ratings |
| `reviews` | Number of reviews |
| `histogram` | Rating distribution |
| `price` | App price |
| `free` | Whether the app is free (True/False) |
| `offersIAP` | Offers in-app purchases (True/False) |
| `inAppProductPrice` | In-app product price |
| `developer` | Developer name |
| `developerId` | Developer ID |
| `genre` | App genre |
| `genreId` | Genre ID |
| `categories` | App categories |
| `contentRating` | Content rating (e.g., Everyone, Teen) |
| `adSupported` | Indicates if the app is ad-supported (True/False) |
| `containsAds` | Indicates if the app contains ads (True/False) |
| `released` | App release date |
| `lastUpdatedOn` | Date of the latest update |
| `appId` | Unique app identifier |
## How to Use
### Download via Hugging Face Python Library
**Install the library:**
```bash
pip install huggingface_hub
```
**Download specific files:**
```python
from huggingface_hub import hf_hub_download
# Download specific files
hf_hub_download(repo_id="mllmTeam/MobileViews", filename="MobileViews_0-150000.parquet")
hf_hub_download(repo_id="mllmTeam/MobileViews", filename="MobileViews_0-150000.zip")
hf_hub_download(repo_id="mllmTeam/MobileViews", filename="AppMetadata.csv")
```
**Download the entire repository:**
```python
from huggingface_hub import snapshot_download
# Download the entire repository
snapshot_download(repo_id="mllmTeam/MobileViews")
```
### The usage of `zip` files
We recommend verifying the completeness and integrity of the files before unzipping them by following these steps.
**Example for `MobileViews_0-150000.zip`:**
```bash
# Integrity check
zip -T MobileViews_0-150000.zip # Expected output: test of MobileViews_0-150000.zip OK
# Verify file counts (JSON and JPG)
unzip -l MobileViews_0-150000.zip | grep ".json" | wc -l # Expected output: 150001
unzip -l MobileViews_0-150000.zip | grep ".jpg" | wc -l # Expected output: 150001
# Verify file size
du -sh MobileViews_0-150000.zip # Expected output: 23G
# Verify SHA256 checksum
sha256sum -c MobileViews_0-150000.zip.sha256 # Expected output: MobileViews_0-150000.zip: OK
# Unzip
unzip MobileViews_0-150000.zip
```
**Expected Outputs for Other ZIP Files:**
- **MobileViews_150001-291197.zip**:
- Integrity: `test of MobileViews_150001-291197.zip OK`
- JSON count: `141197`
- JPG count: `141197`
- Size: `36G`
- SHA256: `MobileViews_150001-291197.zip: OK`
- **MobileViews_300000-400000.zip**:
- Integrity: `test of MobileViews_300000-400000.zip OK`
- JSON count: `100001`
- JPG count: `100001`
- Size: `24G`
- SHA256: `MobileViews_300000-400000.zip: OK`
- **MobileViews_400001-522301.zip**:
- Integrity: `test of MobileViews_400001-522301.zip OK`
- JSON count: `122301`
- JPG count: `122301`
- Size: `13G`
- SHA256: `MobileViews_400001-522301.zip: OK`
## The usage of `parquet` files
`Parquet` is an efficient, compressed columnar storage format optimized for large datasets. You can learn more about [Parquet](https://parquet.apache.org/docs).
We provide `useparquet.py`, which includes functions such as `check_row_count`, `save_n_images_and_jsons`, and `save_all_images_and_jsons` to help you quickly access the dataset.
If you need additional functionality, you can refer to the [`pyarrow`](https://arrow.apache.org/docs/python/generated/pyarrow.parquet.ParquetFile.html) documentation to explore more APIs.
```bash
pip install pyarrow
# check the path and the function you need
python path/to/useparquet.py
```
## Citation
If you use this dataset in your research, please cite our work as follows:
```
@misc{gao2024mobileviewslargescalemobilegui,
title={MobileViews: A Large-Scale Mobile GUI Dataset},
author={Longxi Gao and Li Zhang and Shihe Wang and Shangguang Wang and Yuanchun Li and Mengwei Xu},
year={2024},
eprint={2409.14337},
archivePrefix={arXiv},
primaryClass={cs.HC},
url={https://arxiv.org/abs/2409.14337},
}
```
|