File size: 4,492 Bytes
c83a125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# !pip install datasets\n",
"\n",
"from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"home_values_forecasts\n",
"new_constructions\n",
"for_sale_listings\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading data: 100%|ββββββββββ| 215M/215M [00:05<00:00, 37.3MB/s] \n",
"Generating train split: 693661 examples [00:20, 34052.02 examples/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"rentals\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading data: 100%|ββββββββββ| 413M/413M [00:12<00:00, 34.2MB/s] \n",
"Generating train split: 1258740 examples [00:28, 44715.39 examples/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"sales\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading data: 100%|ββββββββββ| 280M/280M [00:06<00:00, 41.1MB/s] \n",
"Generating train split: 504608 examples [00:19, 25569.29 examples/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"home_values\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading data: 100%|ββββββββββ| 47.3M/47.3M [00:01<00:00, 29.7MB/s]\n",
"Generating train split: 117912 examples [00:03, 35540.83 examples/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"days_on_market\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Generating train split: 586714 examples [00:16, 34768.33 examples/s]\n"
]
}
],
"source": [
"configs = [\n",
" \"home_values_forecasts\",\n",
" \"new_construction\",\n",
" \"for_sale_listings\",\n",
" \"rentals\",\n",
" \"sales\",\n",
" \"home_values\",\n",
" \"days_on_market\",\n",
"]\n",
"for config in configs:\n",
" print(config)\n",
" dataset = load_dataset(\"misikoff/zillow\", config, trust_remote_code=True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Region ID': '102001',\n",
" 'Size Rank': 0,\n",
" 'Region': 'United States',\n",
" 'Region Type': 'country',\n",
" 'State': None,\n",
" 'Home Type': 'SFR',\n",
" 'Date': '2015-01-31',\n",
" 'Rent (Smoothed)': 1251.1195068359375,\n",
" 'Rent (Smoothed) (Seasonally Adjusted)': 1253.3807373046875}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(iter((dataset[\"train\"])))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"gen = iter((dataset[\"train\"]))"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Region ID': '102001',\n",
" 'Size Rank': 0,\n",
" 'Region': 'United States',\n",
" 'Region Type': 'country',\n",
" 'State': None,\n",
" 'Home Type': 'condo/co-op only',\n",
" 'Date': '2018-03-31',\n",
" 'Sale Price': 386700.0,\n",
" 'Sale Price per Sqft': 238.31776428222656,\n",
" 'Count': 4267}"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"next(gen)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "sta663",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|