File size: 4,397 Bytes
69c22e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import os
from helpers import (
get_combined_df,
save_final_df_as_jsonl,
handle_slug_column_mappings,
)
# In[2]:
DATA_DIR = "../data"
PROCESSED_DIR = "../processed/"
FACET_DIR = "home_values/"
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
# In[5]:
data_frames = []
slug_column_mappings = {
"_tier_0.0_0.33_": "Bottom Tier ZHVI",
"_tier_0.33_0.67_": "Mid Tier ZHVI",
"_tier_0.67_1.0_": "Top Tier ZHVI",
"": "ZHVI",
}
for filename in os.listdir(FULL_DATA_DIR_PATH):
if filename.endswith(".csv"):
print("processing " + filename)
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Bedroom Count",
"Home Type",
]
if "Zip" in filename:
continue
if "Neighborhood" in filename:
continue
if "City" in filename:
continue
if "Metro" in filename:
continue
if "County" in filename:
continue
if "City" in filename:
exclude_columns = exclude_columns + ["State", "Metro", "CountyName"]
elif "Zip" in filename:
exclude_columns = exclude_columns + [
"State",
"City",
"Metro",
"CountyName",
]
elif "County" in filename:
exclude_columns = exclude_columns + [
"State",
"Metro",
"StateCodeFIPS",
"MunicipalCodeFIPS",
]
elif "Neighborhood" in filename:
exclude_columns = exclude_columns + [
"State",
"City",
"Metro",
"CountyName",
]
if "_bdrmcnt_1_" in filename:
cur_df["Bedroom Count"] = "1-Bedroom"
elif "_bdrmcnt_2_" in filename:
cur_df["Bedroom Count"] = "2-Bedrooms"
elif "_bdrmcnt_3_" in filename:
cur_df["Bedroom Count"] = "3-Bedrooms"
elif "_bdrmcnt_4_" in filename:
cur_df["Bedroom Count"] = "4-Bedrooms"
elif "_bdrmcnt_5_" in filename:
cur_df["Bedroom Count"] = "5+-Bedrooms"
else:
cur_df["Bedroom Count"] = "All Bedrooms"
if "_uc_sfr_" in filename:
cur_df["Home Type"] = "SFR"
elif "_uc_sfrcondo_" in filename:
cur_df["Home Type"] = "all homes (SFR/condo)"
elif "_uc_condo_" in filename:
cur_df["Home Type"] = "condo"
cur_df["StateName"] = cur_df["StateName"].astype(str)
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
data_frames = handle_slug_column_mappings(
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
)
combined_df = get_combined_df(
data_frames,
[
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Bedroom Count",
"Home Type",
"Date",
],
)
combined_df
# In[11]:
final_df = combined_df
for index, row in final_df.iterrows():
if row["RegionType"] == "city":
final_df.at[index, "City"] = row["RegionName"]
elif row["RegionType"] == "county":
final_df.at[index, "County"] = row["RegionName"]
if row["RegionType"] == "state":
final_df.at[index, "StateName"] = row["RegionName"]
# coalesce State and StateName columns
# final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
# final_df["County"] = final_df["County"].combine_first(final_df["CountyName"])
# final_df = final_df.drop(
# columns=[
# "StateName",
# # "CountyName"
# ]
# )
final_df
# In[12]:
final_df = final_df.rename(
columns={
"RegionID": "Region ID",
"SizeRank": "Size Rank",
"RegionName": "Region",
"RegionType": "Region Type",
"StateCodeFIPS": "State Code FIPS",
"StateName": "State",
"MunicipalCodeFIPS": "Municipal Code FIPS",
}
)
final_df
# In[13]:
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|