File size: 8,051 Bytes
6be63ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b174a
6be63ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 12 16:13:56 2024

@author: tominhanh
"""

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Test 6

import pandas as pd
from PIL import Image as PilImage  # Import PIL Image with an alias
import datasets
from datasets import DatasetBuilder, GeneratorBasedBuilder, DownloadManager, DatasetInfo, Features, Image, ClassLabel, Value, Sequence, load_dataset, SplitGenerator
import os
import io
from typing import Tuple, Dict, List
import numpy as np
import zipfile
import requests
import random
from io import BytesIO
import csv

_CITATION = """\
https://arxiv.org/abs/2102.09099
"""

_DESCRIPTION = """\
The comprehensive dataset contains over 220,000 single-rater and multi-rater labeled nuclei from breast cancer images
obtained from TCGA, making it one of the largest datasets for nucleus detection, classification, and segmentation in hematoxylin and eosin-stained
digital slides of breast cancer. This version of the dataset is a revised single-rater dataset, featuring over 125,000 nucleus csvs.
These nuclei were annotated through a collaborative effort involving pathologists, pathology residents, and medical students, using the Digital Slide Archive.
"""

_HOMEPAGE = "https://sites.google.com/view/nucls/home?authuser=0"

_LICENSE = "CC0 1.0 license"

_URL = "https://www.dropbox.com/scl/fi/srq574rdgvp7f5gwr60xw/NuCLS_dataset.zip?rlkey=qjc9q8shgvnqpfy4bktbqybd1&dl=1"

class NuCLSDataset(GeneratorBasedBuilder):
    """The NuCLS dataset."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        """Returns the dataset info."""

        # Define the classes for the classifications
        raw_classification = ClassLabel(names=[
            'apoptotic_body', 'ductal_epithelium', 'eosinophil','fibroblast', 'lymphocyte',
            'macrophage', 'mitotic_figure', 'myoepithelium', 'neutrophil',
            'plasma_cell','tumor', 'unlabeled', 'vascular_endothelium'
        ])
        main_classification = ClassLabel(names=[
            'AMBIGUOUS', 'lymphocyte', 'macrophage', 'nonTILnonMQ_stromal',
            'plasma_cell', 'tumor_mitotic', 'tumor_nonMitotic',
        ])
        super_classification = ClassLabel(names=[
            'AMBIGUOUS','nonTIL_stromal','sTIL', 'tumor_any',
        ])
        type = ClassLabel(names=['rectangle', 'polyline'])

        # Assuming a maximum length for polygon coordinates.
        max_polygon_length = 20

        # Define features
        features = Features({
            # Images will be loaded as arrays; you'll dynamically handle the varying sizes in the generator function
                'rgb_image': Image(decode=False),
                'mask_image': Image(decode=False),
                'visualization_image': Image(decode=False),

            # Annotation coordinates
                'annotation_coordinates': Features({
                    'raw_classification': raw_classification,
                    'main_classification': main_classification,
                    'super_classification': super_classification,
                    'type': type,
                    'xmin': Value('int64'),
                    'ymin': Value('int64'),
                    'xmax': Value('int64'),
                    'ymax': Value('int64'),
                    'coords_x': Sequence(Value('float32')),
                    'coords_y': Sequence(Value('float32')),
                })
        })

        return DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
          )

    def _split_generators(self, dl_manager: DownloadManager):
        # Download source data
        data_dir = dl_manager.download_and_extract(_URL)

        # Directory paths
        rgb_dir = os.path.join(data_dir, "rgb")
        visualization_dir = os.path.join(data_dir, "visualization")
        mask_dir = os.path.join(data_dir, "mask")
        csv_dir = os.path.join(data_dir, "csv")

        # Generate a list of unique filenames (without extensions)
        unique_filenames = [os.path.splitext(f)[0] for f in os.listdir(rgb_dir)]

        # Split filenames into training and testing sets
        random.shuffle(unique_filenames)
        split_idx = int(0.8 * len(unique_filenames))
        train_filenames = unique_filenames[:split_idx]
        test_filenames = unique_filenames[split_idx:]

        # Map filenames to file paths for each split
        train_filepaths = self._map_filenames_to_paths(train_filenames, rgb_dir, visualization_dir, mask_dir, csv_dir)
        test_filepaths = self._map_filenames_to_paths(test_filenames, rgb_dir, visualization_dir, mask_dir, csv_dir)

        # Create the split generators
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepaths": train_filepaths}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepaths": test_filepaths}
            ),
        ]

    def _map_filenames_to_paths(self, filenames, rgb_dir, visualization_dir, mask_dir, csv_dir):
        """Maps filenames to file paths for each split."""
        filepaths = {}
        for filename in filenames:
            filepaths[filename] = {
                'fov': os.path.join(rgb_dir, filename + '.png'),
                'visualization': os.path.join(visualization_dir, filename + '.png'),
                'mask': os.path.join(mask_dir, filename + '.png'),
                'csv': os.path.join(csv_dir, filename + '.csv'),
            }
        return filepaths


    def _generate_examples(self, filepaths):
        """Yield examples as (key, example) tuples."""

        for key, paths in filepaths.items():
            # Initialize an example dictionary
            example = {
                'rgb_image': self._read_image_file(paths['fov']),
                'mask_image': self._read_image_file(paths['mask']),
                'visualization_image': self._read_image_file(paths['visualization']),
                'annotation_coordinates': self._read_csv_file(paths['csv']),
            }

            yield key, example

    def _read_image_file(self, file_path: str) -> PilImage:
        """Reads an image file and returns it as a PIL Image object."""
        try:
            with open(file_path, 'rb') as f:
                return PilImage.open(f)
        except Exception as e:
            print(f"Error reading image file {file_path}: {e}")
            return None

    def _read_csv_file(self, file_path: str):
        """Reads a CSV file and returns the contents in the expected format."""
        try:
            csv_df = pd.read_csv(file_path)
            if csv_df.empty:
                print(f"Warning: CSV file {file_path} is empty.")
                return None
            else:
                # Convert the DataFrame into the structure that matches your features' annotation_coordinates
                return self._process_csv_data(csv_df)
        except Exception as e:
            print(f"Error reading CSV file {file_path}: {e}")
            return None

    # Implement this method to process and convert CSV data into the format expected by your dataset's features
    def _process_csv_data(self, csv_df):
        # Process the DataFrame and return the data in the correct format
        pass