Datasets:
File size: 9,559 Bytes
3f823da 5af1a37 3f823da 6747b07 3f823da 502b5eb 3f823da 6747b07 3f823da 502b5eb 3f823da 502b5eb 3f823da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import json
import os
import copy
import re
from os import listdir
from os.path import isfile, join
import argparse
import sys
INSTRUCT_CHUNKED_PROMPT = """你是一个翻译API。请将以下内容翻译为中文。输入内容的格式如下:
[开始时间1] 原文文本1 [结束时间1]
[开始时间2] 原文文本2 [结束时间2]
[开始时间3] 原文文本3 [结束时间3]
...
请翻译其中内容,并严格按以下格式输出:
[开始时间1] 译文文本1 [结束时间1]
[开始时间2] 译文文本2 [结束时间2]
[开始时间3] 译文文本3 [结束时间3]
...
为保证语序通顺,有时需要合并多行原文。例如,如果原文文本1和2需要合并的话,请按以下格式输出:
[开始时间1] 译文文本1 译文文本2 [结束时间2]
[开始时间2] 译文文本3 [结束时间3]
以下是一个真实的例子:
输入:
[368.18] but if it's not for you, [369.70]
[369.70] TikTok has made the Android app [371.31]
[371.31] available on its website, [372.96]
[372.96] since it's still not allowed back on Google Play. [375.32]
输出:
[368.18] 但如果它不适合你, [369.70]
[369.70] TikTok已经在其网站上提供了安卓应用的下载, [372.96]
[372.96] 因为它仍然未被允许重返Google Play商店。 [375.32]
"""
def break_line(line: str):
pattern = re.compile(r"^\[(\d+.\d+)\](.*)\[(\d+.\d+)\]$")
match = pattern.match(line)
start_time = match.group(1)
text = match.group(2)
end_time = match.group(3)
return start_time, text.strip(), end_time, float(start_time), float(end_time)
def get_total_chars(cn_lines: list[str], en_lines: list[str]):
cn_total_chars = 0
en_total_chars = 0
for line in cn_lines:
cn_total_chars += len(line)
for line in en_lines:
en_total_chars += len(line)
return cn_total_chars + en_total_chars
def chunk_messages(cn_lines: list[str], en_lines: list[str], MAX_LEN: int = 2000):
cn_lines_copy = copy.deepcopy(cn_lines)
en_lines_copy = copy.deepcopy(en_lines)
final_chunks: list[tuple[list[str], list[str]]] = []
while True:
en_current_chunk = []
cn_current_chunk = []
while True:
curr_total_len = get_total_chars(cn_current_chunk, en_current_chunk)
if len(cn_lines_copy) == 0 or len(en_lines_copy) == 0:
final_chunks.append((cn_current_chunk, en_current_chunk))
return final_chunks
elif curr_total_len > MAX_LEN:
final_chunks.append((cn_current_chunk, en_current_chunk))
break
else:
# Try append a new line to current chunk
latest_cn_line = cn_lines_copy.pop(0)
cn_start, cn_text, cn_end, cn_start_f, cn_end_f = break_line(latest_cn_line)
cn_current_chunk.append(latest_cn_line)
while True:
latest_en_line = en_lines_copy.pop(0)
en_start, en_text, en_end, en_start_f, en_end_f = break_line(latest_en_line)
en_current_chunk.append(latest_en_line)
if en_end == cn_end:
break
else:
if en_start_f > cn_end_f:
raise Exception("ERROR: English and Chinese lines are not in sync. Offensing line: " + latest_cn_line)
def new_message(eng_in, chs_out, prev_in = None, prev_out = None):
if(prev_in == None or prev_out == None):
return {"messages": [
{"role": "system", "content": INSTRUCT_CHUNKED_PROMPT},
{"role": "user", "content": eng_in},
{"role": "assistant", "content": chs_out}]
}
else:
return {"messages": [
{"role": "system", "content": INSTRUCT_CHUNKED_PROMPT},
{"role": "user", "content": prev_in},
{"role": "assistant", "content": prev_out},
{"role": "user", "content": eng_in},
{"role": "assistant", "content": chs_out}]
}
def write_jsonl(message_groups, filename):
json_lines = []
with open(filename, "w", encoding='utf-8') as fout:
for i in range(len(message_groups)):
if(i>0):
msg_obj = new_message(
message_groups[i][0].strip(),
message_groups[i][1].strip(),
message_groups[i-1][0].strip(),
message_groups[i-1][1].strip()
)
else:
msg_obj = new_message(
message_groups[i][0].strip(),
message_groups[i][1].strip()
)
json.dump(msg_obj, fout)
fout.write("\n")
json_lines.append(json.dumps(msg_obj))
return json_lines
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate ChatGPT training data from a directory of subtitle files.')
parser.add_argument('data_dir', type=str, help='The directory containing the subtitle files.', default="data")
parser.add_argument('--maxlen', type=int, help='The maximum length of a combined message. \nNote that this limit will be exceeded a little bit, so leave some headroom. \nRecommended value is max context length / 4.', default=2000)
parser.add_argument('--test-ratio', type=float, help='The ratio of test data to training data.', default=0.2)
args = parser.parse_args()
message_groups = []
DOCUMENT_ROOT = args.data_dir
files = listdir(DOCUMENT_ROOT)
files = list(filter(lambda x: x.endswith(".en.txt"), files))
files.sort()
for f in files:
en_fname = join(DOCUMENT_ROOT, f)
if en_fname.endswith(".en.txt") and isfile(en_fname):
cn_fname = join(DOCUMENT_ROOT, f.replace(".en.txt", ".cn.txt"))
if os.path.exists(cn_fname) and isfile(cn_fname):
print(f"Found data pair: {en_fname} and {cn_fname}")
with open(en_fname, "r", encoding='utf-8-sig') as enfin:
en_messages = enfin.read()
with open(cn_fname, "r", encoding='utf-8-sig') as cnfin:
cn_messages = cnfin.read()
en_messages = [part.strip() for part in en_messages.split("\n") if part.strip() != ""]
cn_messages = [part.strip() for part in cn_messages.split("\n") if part.strip() != ""]
try:
chunks = chunk_messages(cn_messages, en_messages, MAX_LEN=args.maxlen)
en_messages = []
cn_messages = []
for chunk in chunks:
cn_chunk, en_chunk = chunk
en_messages.append("\n".join(en_chunk))
cn_messages.append("\n".join(cn_chunk))
# print("\n".join(en_chunk))
# print("---")
# print("\n".join(cn_chunk))
# print("\n")
except Exception as e:
print(f"Error: {e}")
continue
if(len(en_messages) != len(cn_messages)):
print(f"English and Chinese version mismatch. Discarding {en_fname} pair.")
messages = zip(en_messages, cn_messages)
message_groups.extend(messages)
jsonl_lines = write_jsonl(message_groups, f"combined-{args.maxlen}.jsonl")
import random
random.shuffle(jsonl_lines)
TEST_RATIO = args.test_ratio
split_index = int(len(jsonl_lines) * TEST_RATIO)
test = jsonl_lines[:split_index]
train = jsonl_lines[split_index:]
with open (f"chatgpt-train-{args.maxlen}.jsonl", "w", encoding='utf-8') as fout:
for line in train:
fout.write(line + "\n")
with open (f"chatgpt-test-{args.maxlen}.jsonl", "w", encoding='utf-8') as fout:
for line in test:
fout.write(line + "\n")
# recent_files = files[-5:]
# recent_messages = []
# for f in recent_files:
# en_fname = join(DOCUMENT_ROOT, f)
# if en_fname.endswith(".en.txt") and isfile(en_fname):
# cn_fname = join(DOCUMENT_ROOT, f.replace(".en.txt", ".cn.txt"))
# if os.path.exists(cn_fname) and isfile(cn_fname):
# print(f"Found data pair: {en_fname} and {cn_fname}")
# with open(en_fname, "r", encoding='utf-8-sig') as enfin:
# en_messages = enfin.read()
# with open(cn_fname, "r", encoding='utf-8-sig') as cnfin:
# cn_messages = cnfin.read()
# en_messages = [part.strip() for part in en_messages.split("\n") if part.strip() != ""]
# cn_messages = [part.strip() for part in cn_messages.split("\n") if part.strip() != ""]
# if(len(en_messages) != len(cn_messages)):
# print(f"English and Chinese version mismatch. Discarding {en_fname} pair.")
# messages = zip(en_messages, cn_messages)
# recent_messages.extend(messages)
# write_jsonl(recent_messages, "recent-combined.jsonl")
# TEST_RATIO = 0.2
# split_index = int(len(recent_messages) * TEST_RATIO)
# test = recent_messages[:split_index]
# train = recent_messages[split_index:]
# write_jsonl(train, "chatgpt-recent-train.jsonl")
# write_jsonl(test, "chatgpt-recent-test.jsonl") |