Dataset Preview
Go to dataset viewer
The dataset preview is not available for this dataset.
Not found.
Error code: ResponseNotFound
This error is unexpected. Please open an issue for direct support.
Unsupervised malay speakers from youtube videos
10492 unique speakers with at least 75 hours of voice activities. Steps to reproduce at https://github.com/huseinzol05/malaya-speech/blob/master/data/youtube/process-youtube.ipynb
how-to
Download and extract processed-youtube.tar.gz, each processed videos saved as pickle,
{video_name}.pkl
.Each pickle file got,
[{'wav_data': '/home/husein/ssd2/processed-youtube-v2/"Abam_peluk_saya_lama_atas_pentas_akhir_MLM"-_Ali_Puteh_menangis_imbau_saat_manis_dengan_arwah_abang-_MdgGr7VD7w/0.mp3',
'timestamp': datetime.datetime(2023, 3, 2, 18, 45, 45, 778042),
'asr_model': ('kenapa tak mahu bangun kau abang',
[0.5325799628135358],
[309, 9, 399, 633, 108, 252]),
'classification_model': (array([ 3.02432757e-03, -3.64390127e-02, 2.93319039e-02, -2.84599233e-02,
-5.04244901e-02, 6.03185333e-02, 7.04260264e-03, 7.36895157e-03,
2.41034012e-02, -3.31214964e-02, -1.61228217e-02, -1.92081463e-02,
-1.77928973e-02, 1.05488757e-02, 5.11314301e-03, 2.08497643e-02,
2.80407351e-02, -1.34683009e-02, 1.10213496e-02, -5.76948654e-03,
2.11171638e-02, -3.10498872e-03, 1.60899870e-02, -2.22061612e-02,
-3.09270490e-02, 1.03673469e-02, 2.29822248e-02, 5.44358939e-02,
-9.44061391e-03, 3.24469656e-02, -1.40673192e-02, 6.55731931e-03,
1.94134321e-02, 2.31755860e-02, -8.62774719e-03, -3.72681394e-03,
-3.17485556e-02, -1.12474747e-02, 1.65595114e-02, 2.31244415e-02,
3.28784771e-02, 8.52510054e-03, -6.41896739e-04, 3.13562714e-03,
-3.15982029e-02, 1.72785181e-03, 1.58039071e-02, -9.93900001e-03,
2.03248486e-02, -2.98949536e-02, 3.53759155e-02, 3.06809470e-02,
-3.68881435e-03, -3.98267582e-02, -2.07101982e-02, 2.51877047e-02,
-2.51530181e-03, 1.06034977e-02, 1.24978041e-02, 2.35916697e-03,
1.31300613e-02, -1.62451845e-02, -2.09861826e-02, 3.17490734e-02,
-1.18532358e-02, 4.25735563e-02, 4.17908467e-02, 1.21251179e-03,
-3.85571155e-03, -9.50544327e-03, -7.37808086e-03, 2.63940021e-02,
1.09219365e-02, 3.05683501e-02, -4.08848785e-02, -1.71920974e-02,
-1.46033484e-02, -3.29053291e-05, 3.84788848e-02, -7.86552951e-03,
1.01251132e-03, 2.72140447e-02, 2.52339337e-02, 3.39004360e-02,
-1.38184745e-02, 2.60320995e-02, -1.01425601e-02, -1.16012329e-02,
4.30319924e-03, -1.01203052e-02, -4.66396799e-03, -2.64480542e-02,
3.44322808e-02, -4.64622118e-03, 1.06053520e-02, 1.37923108e-02,
-2.05409434e-03, -1.19995829e-02, 2.10450366e-02, -2.87155900e-03,
-1.39515549e-02, -1.51185887e-02, 2.29053162e-02, -1.78178120e-02,
1.95855577e-03, 2.37271357e-02, 2.80657201e-03, -6.08753460e-03,
-2.01220363e-02, 3.22612897e-02, 1.82474777e-02, 5.31493872e-02,
-7.08705634e-02, 2.76431069e-03, 1.03597697e-02, -3.53837833e-02,
1.38167264e-02, -5.91275143e-03, 1.84398554e-02, 6.05177172e-02,
1.14565976e-02, 1.56977493e-02, -1.82731878e-02, -4.58574407e-02,
-1.08330613e-02, -1.16500622e-02, -1.19803764e-04, 6.48374185e-02,
-1.21538760e-03, -5.41793741e-02, 1.38867721e-02, 3.52845751e-02,
-2.08288375e-02, 1.03750750e-02, -2.17110049e-02, 2.29265504e-02,
-1.21381739e-02, -1.47071329e-03, -4.36875001e-02, -2.25690063e-02,
-4.16939743e-02, -8.39853752e-03, -2.06098761e-02, 2.30504461e-02,
3.48615423e-02, -4.18495797e-02, -2.41985917e-03, -3.18994140e-03,
1.22078639e-02, -9.50168632e-03, -1.97298196e-03, 1.30731370e-02,
2.07234323e-02, 1.08521534e-02, 2.30542179e-02, -2.54045837e-02,
1.45645533e-02, -1.08493539e-02, -1.30415503e-02, 3.29123251e-02,
3.46204527e-02, 2.58748885e-04, -1.28235819e-03, -1.32823242e-02,
5.47284493e-03, -2.62062326e-02, 2.31803600e-02, -2.04505119e-02,
2.32407395e-02, 2.12946888e-02, -1.28869051e-02, -6.81399694e-03,
5.68802692e-02, 4.31004271e-04, 1.67261921e-02, 2.93559525e-02,
1.32581135e-02, -9.03073605e-03, -9.38207190e-03, 1.74718127e-02,
1.72506981e-02, 5.02267219e-02, -1.32851647e-02, 5.07321544e-02,
-1.87530685e-02, 4.18599546e-02, 1.50075918e-02, -2.61102356e-02,
-1.59594957e-02, 1.36823149e-03, -9.64679196e-03, 1.71130225e-02],
dtype=float32),
'speaker 0')}]
- all mp3 files postprocessing using https://malaya-speech.readthedocs.io/en/latest/load-noise-reduction.html and https://malaya-speech.readthedocs.io/en/latest/load-speech-enhancement.html
wav_data
is directory of the audio, prune the path to proper extracted directory.asr_model
is predicted using the best model that we have,conformer-medium
, returned(text, probability, subwords)
, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-pt.htmlclassification_model
is predicted using NEMO TITANET Large speaker verification model, https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/titanet_large, with streaming speaker similarity, https://malaya-speech.readthedocs.io/en/latest/huggingface-repository.html
- Group by similar speakers using pagerank method (scipy.sparse.linalg.gmres),
- 90% similar, from 10492 unique speakers become 6085 unique speakers, https://github.com/huseinzol05/malaya-speech/blob/master/data/youtube/mapping-youtube-speakers-90.json
- 85% similar, from 10492 unique speakers become 4312 unique speakers, https://github.com/huseinzol05/malaya-speech/blob/master/data/youtube/mapping-youtube-speakers-85.json
- 80% similar, from 10492 unique speakers become 2912 unique speakers, https://github.com/huseinzol05/malaya-speech/blob/master/data/youtube/mapping-youtube-speakers-80.json
Speaker name defined as,
import os
import pickle
pkl = 'filename.pkl'
with open(pkl, 'rb') as fopen:
data = pickle.load(fopen)
filename = os.path.split(pkl)[1].replace('.pkl', '')
for result in data:
speaker_name = f'{filename}-{speaker}'
actual_speaker = unique_speakers[speaker_name]
Check example at https://github.com/huseinzol05/malaya-speech/blob/master/data/youtube/calculate-lengths-80.ipynb
- Downloads last month
- 0