syntheory / README.md
meganwei's picture
Update README.md
92c814f verified
---
license: mit
dataset_info:
- config_name: chords
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: chord_type
dtype: string
- name: inversion
dtype: int64
- name: root_note_is_accidental
dtype: bool
- name: root_note_pitch_class
dtype: int64
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 18697466628.48
num_examples: 13248
download_size: 18637787206
dataset_size: 18697466628.48
- config_name: intervals
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: root_note_pitch_class
dtype: int64
- name: interval
dtype: int64
- name: play_style
dtype: int64
- name: play_style_name
dtype: string
- name: midi_note_val
dtype: int64
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 56093049925.056
num_examples: 39744
download_size: 56074987413
dataset_size: 56093049925.056
- config_name: notes
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: root_note_pitch_class
dtype: int64
- name: octave
dtype: int64
- name: root_note_is_accidental
dtype: bool
- name: register
dtype: int64
- name: midi_note_val
dtype: int64
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 14023184428.832
num_examples: 9936
download_size: 13804952340
dataset_size: 14023184428.832
- config_name: scales
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: mode
dtype: string
- name: play_style
dtype: int64
- name: play_style_name
dtype: string
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 21813743576.416
num_examples: 15456
download_size: 21806379646
dataset_size: 21813743576.416
- config_name: simple_progressions
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: key_note_name
dtype: string
- name: key_note_pitch_class
dtype: int64
- name: chord_progression
dtype: string
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 29604485544.56
num_examples: 20976
download_size: 29509153369
dataset_size: 29604485544.56
- config_name: tempos
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: bpm
dtype: int64
- name: click_config_name
dtype: string
- name: midi_program_num
dtype: int64
- name: offset_time
dtype: float64
splits:
- name: train
num_bytes: 2840527084
num_examples: 4025
download_size: 1323717012
dataset_size: 2840527084
- config_name: time_signatures
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: time_signature
dtype: string
- name: time_signature_beats
dtype: int64
- name: time_signature_subdivision
dtype: int64
- name: is_compound
dtype: int64
- name: bpm
dtype: int64
- name: click_config_name
dtype: string
- name: midi_program_num
dtype: int64
- name: offset_time
dtype: float64
- name: reverb_level
dtype: int64
splits:
- name: train
num_bytes: 846915090
num_examples: 1200
download_size: 692431621
dataset_size: 846915090
configs:
- config_name: chords
data_files:
- split: train
path: chords/train-*
- config_name: intervals
data_files:
- split: train
path: intervals/train-*
- config_name: notes
data_files:
- split: train
path: notes/train-*
- config_name: scales
data_files:
- split: train
path: scales/train-*
- config_name: simple_progressions
data_files:
- split: train
path: simple_progressions/train-*
- config_name: tempos
data_files:
- split: train
path: tempos/train-*
- config_name: time_signatures
data_files:
- split: train
path: time_signatures/train-*
task_categories:
- audio-classification
- feature-extraction
language:
- en
tags:
- audio
- music
- music information retrieval
size_categories:
- 100K<n<1M
---
# Dataset Card for SynTheory
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Do Music Generation Models Encode Music Theory?](https://brown-palm.github.io/music-theory/)
- **Repository:** [SynTheory](https://github.com/brown-palm/syntheory)
- **Paper:** [Do Music Generation Models Encode Music Theory?](https://arxiv.org/abs/2410.00872)
### Dataset Summary
SynTheory is a synthetic dataset of music theory concepts, specifically rhythmic (tempos and time signatures) and tonal (notes, intervals, scales, chords, and chord progressions).
Each of these 7 concepts has its own config.
`tempos` consist of 161 total integer tempos (`bpm`) ranging from 50 BPM to 210 BPM (inclusive), 5 percussive instrument types (`click_config_name`), and 5 random start time offsets (`offset_time`).
`time_signatures` consist of 8 time signatures (`time_signature`), 5 percussive instrument types (`click_config_name`), 10 random start time offsets (`offset_time`), and 3 reverb levels (`reverb_level`). The 8 time signatures are 2/2, 2/4, 3/4, 3/8, 4/4, 6/8, 9/8, and 12/8.
`notes` consist of 12 pitch classes (`root_note_name`), 9 octaves (`octave`), and 92 instrument types (`midi_program_name`). The 12 pitch classes are C, C#, D, D#, E, F, F#, G, G#, A, A# and B.
`intervals` consist of 12 interval sizes (`interval`), 12 root notes (`root_note_name`), 92 instrument types (`midi_program_name`), and 3 play styles (`play_style_name`). The 12 intervals are minor 2nd, Major 2nd, minor 3rd, Major 3rd, Perfect 4th, Tritone, Perfect 5th, minor 6th, Major 6th, minor 7th, Major 7th, and Perfect octave.
`scales` consist of 7 modes (`mode`), 12 root notes (`root_note_name`), 92 instrument types (`midi_program_name`), and 2 play styles (`play_style_name`). The 7 modes are Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian, and Locrian.
`chords` consist of 4 chord quality (`chord_type`), 3 inversions (`inversion`), 12 root notes (`root_note_name`), and 92 instrument types (`midi_program_name`). The 4 chord quality types are major, minor, augmented, and diminished. The 3 inversions are root position, first inversion, and second inversion.
`simple_progressions` consist of 19 chord progressions (`chord_progression`), 12 root notes (`key_note_name`), and 92 instrument types (`midi_program_name`). The 19 chord progressions consist of 10 chord progressions in major mode and 9 in natural minor mode. The major mode chord progressions are (I–IV–V–I), (I–IV–vi–V), (I–V–vi–IV), (I–vi–IV–V), (ii–V–I–Vi), (IV–I–V–Vi), (IV–V–iii–Vi), (V–IV–I–V), (V–vi–IV–I), and (vi–IV–I–V). The natural minor mode chord progressions are (i–ii◦–v–i), (i–III–iv–i), (i–iv–v–i), (i–VI–III–VII), (i–VI–VII–i), (i–VI–VII–III), (i–VII–VI–IV), (iv–VII–i–i), and (VII–vi–VII–i).
### Supported Tasks and Leaderboards
- `audio-classification`: This can be used towards music theory classification tasks.
- `feature-extraction`: Our samples can be fed into pretrained audio codecs to extract representations from the model, which can be further used for downstream MIR tasks.
### How to use
The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
For example, to download the notes config, simply specify the corresponding language config name (i.e., "notes"):
```python
from datasets import load_dataset
notes = load_dataset("meganwei/syntheory", "notes")
```
Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset
notes = load_dataset("meganwei/syntheory", "notes", streaming=True)
print(next(iter(notes)))
```
*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
Local:
```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
from torch.utils.data import DataLoader
notes = load_dataset("meganwei/syntheory", "notes")
batch_sampler = BatchSampler(RandomSampler(notes), batch_size=32, drop_last=False)
dataloader = DataLoader(notes, batch_sampler=batch_sampler)
```
Streaming:
```python
from datasets import load_dataset
from torch.utils.data import DataLoader
notes = load_dataset("meganwei/syntheory", "notes", streaming=True)
dataloader = DataLoader(notes, batch_size=32)
```
To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
### Example scripts
[More Information Needed]
## Dataset Structure
### Data Fields
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
For the notes music theory concept, there are 9,936 distinct note configurations. However, our dataset contains 9,848 non-silent samples. The 88 silent samples at extreme registers are unvoiceable with our soundfont. With a more complete soundfont, all 9,936 configurations are realizable to audio.
The silent samples are the following audio files: 0_0_C_10_Music_Box.wav, 0_0_C_56_Trumpet.wav, 0_0_C_68_Oboe.wav, 1_0_C#_10_Music_Box.wav, 1_0_C#_56_Trumpet.wav, 1_0_C#_68_Oboe.wav, 2_0_D_10_Music_Box.wav, 2_0_D_56_Trumpet.wav, 2_0_D_68_Oboe.wav, 3_0_D#_10_Music_Box.wav, 3_0_D#_56_Trumpet.wav, 3_0_D#_68_Oboe.wav, 4_0_E_10_Music_Box.wav, 4_0_E_56_Trumpet.wav, 4_0_E_68_Oboe.wav, 5_0_F_10_Music_Box.wav, 5_0_F_56_Trumpet.wav, 5_0_F_68_Oboe.wav, 6_0_F#_10_Music_Box.wav, 6_0_F#_56_Trumpet.wav, 6_0_F#_68_Oboe.wav, 7_0_G_10_Music_Box.wav, 7_0_G_56_Trumpet.wav, 7_0_G_68_Oboe.wav, 8_0_G#_10_Music_Box.wav, 8_0_G#_56_Trumpet.wav, 8_0_G#_68_Oboe.wav, 9_0_A_10_Music_Box.wav, 9_0_A_56_Trumpet.wav, 9_0_A_68_Oboe.wav, 10_0_A#_10_Music_Box.wav, 10_0_A#_56_Trumpet.wav, 10_0_A#_68_Oboe.wav, 11_0_B_10_Music_Box.wav, 11_0_B_56_Trumpet.wav, 11_0_B_68_Oboe.wav, 12_0_C_68_Oboe.wav, 13_0_C#_68_Oboe.wav, 14_0_D_68_Oboe.wav, 15_0_D#_68_Oboe.wav, 16_0_E_68_Oboe.wav, 17_0_F_68_Oboe.wav, 18_0_F#_68_Oboe.wav, 19_0_G_68_Oboe.wav, 20_0_G#_68_Oboe.wav, 21_0_A_68_Oboe.wav, 22_0_A#_68_Oboe.wav, 23_0_B_68_Oboe.wav, 24_0_C_68_Oboe.wav, 25_0_C#_68_Oboe.wav, 26_0_D_68_Oboe.wav, 27_0_D#_68_Oboe.wav, 28_0_E_68_Oboe.wav, 29_0_F_68_Oboe.wav, 30_0_F#_68_Oboe.wav, 31_0_G_68_Oboe.wav, 32_0_G#_68_Oboe.wav, 33_0_A_68_Oboe.wav, 34_0_A#_68_Oboe.wav, 35_0_B_68_Oboe.wav, 80_2_G#_67_Baritone_Sax.wav, 81_2_A_67_Baritone_Sax.wav, 82_2_A#_67_Baritone_Sax.wav, 83_2_B_67_Baritone_Sax.wav, 84_2_C_67_Baritone_Sax.wav, 85_2_C#_67_Baritone_Sax.wav, 86_2_D_67_Baritone_Sax.wav, 87_2_D#_67_Baritone_Sax.wav, 88_2_E_67_Baritone_Sax.wav, 89_2_F_67_Baritone_Sax.wav, 90_2_F#_67_Baritone_Sax.wav, 91_2_G_67_Baritone_Sax.wav, 92_2_G#_67_Baritone_Sax.wav, 93_2_A_67_Baritone_Sax.wav, 94_2_A#_67_Baritone_Sax.wav, 95_2_B_67_Baritone_Sax.wav, 96_2_C_67_Baritone_Sax.wav, 97_2_C#_67_Baritone_Sax.wav, 98_2_D_67_Baritone_Sax.wav, 99_2_D#_67_Baritone_Sax.wav, 100_2_E_67_Baritone_Sax.wav, 101_2_F_67_Baritone_Sax.wav, 102_2_F#_67_Baritone_Sax.wav, 103_2_G_67_Baritone_Sax.wav, 104_2_G#_67_Baritone_Sax.wav, 105_2_A_67_Baritone_Sax.wav, 106_2_A#_67_Baritone_Sax.wav, and 107_2_B_67_Baritone_Sax.wav.
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```bibtext
@inproceedings{Wei2024-music,
title={Do Music Generation Models Encode Music Theory?},
author={Wei, Megan and Freeman, Michael and Donahue, Chris and Sun, Chen},
booktitle={International Society for Music Information Retrieval},
year={2024}
}
```
### Data Statistics
| Concept | Number of Samples |
|--------------------|-------------------|
| Tempo | 4,025 |
| Time Signatures | 1,200 |
| Notes | 9,936 |
| Intervals | 39,744 |
| Scales | 15,456 |
| Chords | 13,248 |
| Chord Progressions | 20,976 |