Datasets:
metadata
language:
- en
license: cc-by-4.0
size_categories:
- 10K<n<100K
task_categories:
- time-series-forecasting
- tabular-classification
tags:
- finance
- stock-market
- technical-indicators
- time-series
- trading
- OHLCV
pretty_name: Hourly Stock Prices with Technical Indicators (2023)
Hourly Stock Prices + Technical Indicators (2023)
This dataset contains hourly OHLCV price data and key technical indicators for 8 major U.S. tickers across different sectors. Perfect for time series forecasting, technical analysis, and machine learning projects.
Coverage: January 3, 2023 β December 18, 2023
Symbols: AAPL, MSFT, NVDA, JPM, XOM, SPY, TSLA, AMZN
Records: 11,202
Size: 2.16 MB
π Columns
| Column | Description |
|---|---|
| timestamp | Date & time in UTC (YYYY-MM-DD HH:MM:SS) |
| symbol | Stock ticker |
| open, high, low, close, volume | OHLCV data |
| sma_10, sma_50 | Simple moving averages |
| ema_20 | Exponential moving average |
| rsi_14 | Relative Strength Index |
| macd, macd_signal, macd_hist | MACD components |
| volatility_20 | Rolling volatility (20-hour window) |
| target_up_next | Binary target: 1 if next hour close β₯ 0.05% higher |
βοΈ Technical Details
- Data source: Publicly available financial market data (2023), aggregated and preprocessed to include technical indicators and binary movement labels.
- Interval: 1 hour (aggregated from minute-level data)
- Technical indicators: Calculated using pandas with proper groupby operations per symbol
- Missing values: 16 rows (0.14%) in
volatility_20column - occurs at the start of each symbol's time series where insufficient history exists for 20-hour rolling window - Timestamps: UTC format, ISO 8601 compliant (
YYYY-MM-DD HH:MM:SS) - Metadata:
metadata.jsoncontains full dataset generation details including date ranges, symbols, and target threshold
π Data Quality
- β No duplicate records
- β All prices positive and valid
- β All volumes positive
- β Timestamps properly formatted
- β Target variable balanced (41.75% ups, 58.25% downs)
π Quick Start
Load from Hugging Face
from datasets import load_dataset
import pandas as pd
# Load dataset
dataset = load_dataset("YOUR_USERNAME/hourly-stock-data-2023")
df = pd.DataFrame(dataset['train'])
# Convert timestamp to datetime
df['timestamp'] = pd.to_datetime(df['timestamp'])
print(df.head())
Direct CSV loading
import pandas as pd
df = pd.read_csv('hf://datasets/YOUR_USERNAME/hourly-stock-data-2023/hourly_stock_prices_technical_indicators.csv')
df['timestamp'] = pd.to_datetime(df['timestamp'])
π§ Example Usage
Load and explore
import pandas as pd
# Load dataset
df = pd.read_csv('hourly_stock_prices_technical_indicators.csv')
df['timestamp'] = pd.to_datetime(df['timestamp'])
# Basic statistics
print(f"Total records: {len(df):,}")
print(f"Symbols: {df['symbol'].nunique()}")
print(f"Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
# Target distribution per symbol
df.groupby('symbol')['target_up_next'].mean()
Time series analysis
# Filter for specific symbol
aapl = df[df['symbol'] == 'AAPL'].set_index('timestamp')
# Plot price with moving averages
import matplotlib.pyplot as plt
aapl[['close', 'sma_10', 'sma_50', 'ema_20']].plot(figsize=(12, 6))
plt.title('AAPL Price with Technical Indicators')
plt.show()