File size: 15,667 Bytes
5b9c493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed1cb6
 
 
 
 
 
 
 
5b9c493
2ed1cb6
5b9c493
2ed1cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed1cb6
a3f0141
2ed1cb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
---
dataset_info:
  features:
  - name: tokens
    sequence: string
  - name: tags
    sequence:
      class_label:
        names:
          '0': O
          '1': r0:arg0|agt
          '2': r0:arg0|cau
          '3': r0:arg0|exp
          '4': r0:arg0|pat
          '5': r0:arg0|src
          '6': r0:arg1|ext
          '7': r0:arg1|loc
          '8': r0:arg1|pat
          '9': r0:arg1|tem
          '10': r0:arg2|atr
          '11': r0:arg2|ben
          '12': r0:arg2|efi
          '13': r0:arg2|exp
          '14': r0:arg2|ext
          '15': r0:arg2|ins
          '16': r0:arg2|loc
          '17': r0:arg2|tem
          '18': r0:arg3|ben
          '19': r0:arg3|ein
          '20': r0:arg3|exp
          '21': r0:arg3|fin
          '22': r0:arg3|ins
          '23': r0:arg3|loc
          '24': r0:arg3|ori
          '25': r0:arg4|des
          '26': r0:arg4|efi
          '27': r0:argM|LOC
          '28': r0:argM|adv
          '29': r0:argM|atr
          '30': r0:argM|cau
          '31': r0:argM|ext
          '32': r0:argM|fin
          '33': r0:argM|ins
          '34': r0:argM|loc
          '35': r0:argM|mnr
          '36': r0:argM|tmp
          '37': r0:root
          '38': r10:arg0|agt
          '39': r10:arg1|pat
          '40': r10:arg1|tem
          '41': r10:arg2|atr
          '42': r10:arg2|ben
          '43': r10:arg2|efi
          '44': r10:arg2|loc
          '45': r10:arg3|ben
          '46': r10:arg4|des
          '47': r10:argM|adv
          '48': r10:argM|atr
          '49': r10:argM|fin
          '50': r10:argM|loc
          '51': r10:argM|tmp
          '52': r10:root
          '53': r11:arg0|agt
          '54': r11:arg0|cau
          '55': r11:arg1|pat
          '56': r11:arg1|tem
          '57': r11:arg2|atr
          '58': r11:arg2|ben
          '59': r11:arg2|loc
          '60': r11:arg4|des
          '61': r11:argM|adv
          '62': r11:argM|loc
          '63': r11:argM|mnr
          '64': r11:argM|tmp
          '65': r11:root
          '66': r12:arg0|agt
          '67': r12:arg0|cau
          '68': r12:arg1|pat
          '69': r12:arg1|tem
          '70': r12:arg2|atr
          '71': r12:argM|adv
          '72': r12:argM|cau
          '73': r12:argM|loc
          '74': r12:argM|tmp
          '75': r12:root
          '76': r13:arg0|agt
          '77': r13:arg0|cau
          '78': r13:arg1|pat
          '79': r13:arg1|tem
          '80': r13:arg2|atr
          '81': r13:arg2|ben
          '82': r13:argM|adv
          '83': r13:argM|atr
          '84': r13:argM|loc
          '85': r13:root
          '86': r14:arg0|agt
          '87': r14:arg1|pat
          '88': r14:arg2|ben
          '89': r14:argM|adv
          '90': r14:argM|loc
          '91': r14:argM|mnr
          '92': r14:root
          '93': r15:arg0|cau
          '94': r15:arg1|tem
          '95': r15:arg2|atr
          '96': r15:arg3|ben
          '97': r15:root
          '98': r16:arg0|agt
          '99': r16:arg0|cau
          '100': r16:arg1|pat
          '101': r16:arg1|tem
          '102': r16:argM|loc
          '103': r16:argM|tmp
          '104': r16:root
          '105': r1:arg0|agt
          '106': r1:arg0|cau
          '107': r1:arg0|exp
          '108': r1:arg0|src
          '109': r1:arg1|ext
          '110': r1:arg1|loc
          '111': r1:arg1|pat
          '112': r1:arg1|tem
          '113': r1:arg2|atr
          '114': r1:arg2|ben
          '115': r1:arg2|efi
          '116': r1:arg2|exp
          '117': r1:arg2|ext
          '118': r1:arg2|ins
          '119': r1:arg2|loc
          '120': r1:arg3|atr
          '121': r1:arg3|ben
          '122': r1:arg3|des
          '123': r1:arg3|ein
          '124': r1:arg3|exp
          '125': r1:arg3|fin
          '126': r1:arg3|ins
          '127': r1:arg3|ori
          '128': r1:arg4|des
          '129': r1:arg4|efi
          '130': r1:argM|adv
          '131': r1:argM|atr
          '132': r1:argM|cau
          '133': r1:argM|ext
          '134': r1:argM|fin
          '135': r1:argM|ins
          '136': r1:argM|loc
          '137': r1:argM|mnr
          '138': r1:argM|tmp
          '139': r1:root
          '140': r2:arg0|agt
          '141': r2:arg0|cau
          '142': r2:arg0|exp
          '143': r2:arg0|src
          '144': r2:arg1|ext
          '145': r2:arg1|loc
          '146': r2:arg1|pat
          '147': r2:arg1|tem
          '148': r2:arg2|atr
          '149': r2:arg2|ben
          '150': r2:arg2|efi
          '151': r2:arg2|exp
          '152': r2:arg2|ext
          '153': r2:arg2|ins
          '154': r2:arg2|loc
          '155': r2:arg3|atr
          '156': r2:arg3|ben
          '157': r2:arg3|ein
          '158': r2:arg3|exp
          '159': r2:arg3|fin
          '160': r2:arg3|loc
          '161': r2:arg3|ori
          '162': r2:arg4|des
          '163': r2:arg4|efi
          '164': r2:argM|adv
          '165': r2:argM|atr
          '166': r2:argM|cau
          '167': r2:argM|ext
          '168': r2:argM|fin
          '169': r2:argM|ins
          '170': r2:argM|loc
          '171': r2:argM|mnr
          '172': r2:argM|tmp
          '173': r2:root
          '174': r3:arg0|agt
          '175': r3:arg0|cau
          '176': r3:arg0|exp
          '177': r3:arg0|src
          '178': r3:arg1|ext
          '179': r3:arg1|loc
          '180': r3:arg1|pat
          '181': r3:arg1|tem
          '182': r3:arg2|atr
          '183': r3:arg2|ben
          '184': r3:arg2|efi
          '185': r3:arg2|exp
          '186': r3:arg2|ext
          '187': r3:arg2|ins
          '188': r3:arg2|loc
          '189': r3:arg2|tem
          '190': r3:arg3|ben
          '191': r3:arg3|ein
          '192': r3:arg3|fin
          '193': r3:arg3|loc
          '194': r3:arg3|ori
          '195': r3:arg4|des
          '196': r3:arg4|efi
          '197': r3:argM|adv
          '198': r3:argM|atr
          '199': r3:argM|cau
          '200': r3:argM|ext
          '201': r3:argM|fin
          '202': r3:argM|ins
          '203': r3:argM|loc
          '204': r3:argM|mnr
          '205': r3:argM|tmp
          '206': r3:root
          '207': r4:arg0|agt
          '208': r4:arg0|cau
          '209': r4:arg0|exp
          '210': r4:arg0|src
          '211': r4:arg1|ext
          '212': r4:arg1|loc
          '213': r4:arg1|pat
          '214': r4:arg1|tem
          '215': r4:arg2|atr
          '216': r4:arg2|ben
          '217': r4:arg2|efi
          '218': r4:arg2|exp
          '219': r4:arg2|ext
          '220': r4:arg2|ins
          '221': r4:arg2|loc
          '222': r4:arg3|ben
          '223': r4:arg3|ein
          '224': r4:arg3|exp
          '225': r4:arg3|fin
          '226': r4:arg3|ori
          '227': r4:arg4|des
          '228': r4:arg4|efi
          '229': r4:argM|adv
          '230': r4:argM|atr
          '231': r4:argM|cau
          '232': r4:argM|ext
          '233': r4:argM|fin
          '234': r4:argM|ins
          '235': r4:argM|loc
          '236': r4:argM|mnr
          '237': r4:argM|tmp
          '238': r4:root
          '239': r5:arg0|agt
          '240': r5:arg0|cau
          '241': r5:arg1|ext
          '242': r5:arg1|loc
          '243': r5:arg1|pat
          '244': r5:arg1|tem
          '245': r5:arg2|atr
          '246': r5:arg2|ben
          '247': r5:arg2|efi
          '248': r5:arg2|exp
          '249': r5:arg2|ext
          '250': r5:arg2|loc
          '251': r5:arg3|ben
          '252': r5:arg3|ein
          '253': r5:arg3|fin
          '254': r5:arg3|ins
          '255': r5:arg3|ori
          '256': r5:arg4|des
          '257': r5:arg4|efi
          '258': r5:argM|adv
          '259': r5:argM|atr
          '260': r5:argM|cau
          '261': r5:argM|ext
          '262': r5:argM|fin
          '263': r5:argM|loc
          '264': r5:argM|mnr
          '265': r5:argM|tmp
          '266': r5:root
          '267': r6:arg0|agt
          '268': r6:arg0|cau
          '269': r6:arg1|loc
          '270': r6:arg1|pat
          '271': r6:arg1|tem
          '272': r6:arg2|atr
          '273': r6:arg2|ben
          '274': r6:arg2|efi
          '275': r6:arg2|exp
          '276': r6:arg2|ext
          '277': r6:arg2|loc
          '278': r6:arg3|ben
          '279': r6:arg3|ori
          '280': r6:arg4|des
          '281': r6:argM|adv
          '282': r6:argM|atr
          '283': r6:argM|cau
          '284': r6:argM|ext
          '285': r6:argM|fin
          '286': r6:argM|loc
          '287': r6:argM|mnr
          '288': r6:argM|tmp
          '289': r6:root
          '290': r7:arg0|agt
          '291': r7:arg0|cau
          '292': r7:arg1|loc
          '293': r7:arg1|pat
          '294': r7:arg1|tem
          '295': r7:arg2|atr
          '296': r7:arg2|ben
          '297': r7:arg2|efi
          '298': r7:arg2|loc
          '299': r7:arg3|ben
          '300': r7:arg3|exp
          '301': r7:arg3|fin
          '302': r7:arg3|ori
          '303': r7:arg4|des
          '304': r7:argM|adv
          '305': r7:argM|atr
          '306': r7:argM|cau
          '307': r7:argM|fin
          '308': r7:argM|ins
          '309': r7:argM|loc
          '310': r7:argM|mnr
          '311': r7:argM|tmp
          '312': r7:root
          '313': r8:arg0|agt
          '314': r8:arg0|cau
          '315': r8:arg0|src
          '316': r8:arg1|pat
          '317': r8:arg1|tem
          '318': r8:arg2|atr
          '319': r8:arg2|ben
          '320': r8:arg2|ext
          '321': r8:arg2|loc
          '322': r8:arg3|ori
          '323': r8:arg4|des
          '324': r8:argM|adv
          '325': r8:argM|cau
          '326': r8:argM|ext
          '327': r8:argM|fin
          '328': r8:argM|loc
          '329': r8:argM|mnr
          '330': r8:argM|tmp
          '331': r8:root
          '332': r9:arg0|agt
          '333': r9:arg0|cau
          '334': r9:arg1|pat
          '335': r9:arg1|tem
          '336': r9:arg2|atr
          '337': r9:arg2|ben
          '338': r9:arg2|ins
          '339': r9:arg2|loc
          '340': r9:arg4|des
          '341': r9:argM|adv
          '342': r9:argM|cau
          '343': r9:argM|fin
          '344': r9:argM|loc
          '345': r9:argM|mnr
          '346': r9:argM|tmp
          '347': r9:root
  - name: ids
    dtype: int64
  splits:
  - name: train
    num_bytes: 7401018
    num_examples: 14328
  - name: test
    num_bytes: 876498
    num_examples: 1724
  - name: dev
    num_bytes: 870737
    num_examples: 1654
  download_size: 2426369
  dataset_size: 9148253
license: cc-by-nc-sa-3.0
task_categories:
- token-classification
language:
- es
pretty_name: SpanishSRL
size_categories:
- 10K<n<100K
---
# Dataset Card for SpanishSRL

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Citation Information](#citation-information)

## Dataset Description

- **Repository:** [SpanishSRL Project Hub](https://github.com/mbruton0426/GalicianSRL)
- **Paper:** To be updated 
- **Point of Contact:** [Micaella Bruton](mailto:micaellabruton@gmail.com)

### Dataset Summary

The SpanishSRL dataset is a Spanish-language dataset of tokenized sentences and the semantic role for each token within a sentence. Standard semantic roles for Spanish are identified as well as verbal root; standard roles include "arg0|[agt, cau, exp, src]", "arg1|[ext, loc, pat, tem]", "arg2[atr, ben, efi, exp, ext, ins, loc]", "arg3[ben, ein, fin, ori]", "arg4[des, efi]", and "argM[adv, atr, cau, ext, fin, ins, loc, mnr, tmp]".

### Languages

The text in the dataset is in Spanish.

## Dataset Structure

### Data Instances

A typical data point comprises a tokenized sentence, tags for each token, and a sentence id number. An example from the SpanishSRL dataset looks as follows:
```
{'tokens': ['Ante', 'unas', 'mil', 'personas', ',', 'entre', 'ellas', 'la', 'ministra', 'de', 'Ciencia_y_Tecnología', ',', 'Anna_Birulés', ',', 'el', 'alcalde', 'de', 'Barcelona', ',', 'Joan_Clos', ',', 'la', 'Delegada', 'del', 'Gobierno', ',', 'Julia_García_Valdecasas', ',', 'y', 'una', 'nutrida', 'representación', 'del', 'gobierno', 'catalán', ',', 'Pujol', 'dio', 'un', 'toque', 'de', 'alerta', 'sobre', 'el', 'aumento', 'de', 'los', 'accidentes', 'laborales', '.'],
 'tags': [34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 37, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0],
 'ids': 66}
```
Tags are assigned an id number according to the index of its label as listed in:

```python
>>> dataset['train'].features['tags'].feature.names
```

### Data Fields

- `tokens`: a list of strings
- `tags`: a list of integers
- `ids`: a sentence id, as an integer

### Data Splits

The data is split into a development, training, and test set. The final structure and split sizes are as follow:

```
DatasetDict({
    dev: Dataset({
        features: ['tokens', 'tags', 'ids'],
        num_rows: 1654
    })
    test: Dataset({
        features: ['tokens', 'tags', 'ids'],
        num_rows: 1724
    })
    train: Dataset({
        features: ['tokens', 'tags', 'ids'],
        num_rows: 14328
    })
})
```

## Dataset Creation

### Curation Rationale

SpanishSRL was built to test the verbal indexing method as introduced in the publication listed in the citation against an established baseline.

### Source Data

#### Initial Data Collection and Normalization

Data was collected from the [2009 CoNLL Shared Task](https://ufal.mff.cuni.cz/conll2009-st/). For more information, please refer to the publication listed in the citation.

## Additional Information

### Dataset Curators

The dataset was created by Micaella Bruton, as part of her Master's thesis.

### Citation Information

```
@inproceedings{bruton-beloucif-2023-bertie,
    title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician",
    author = "Bruton, Micaella  and
      Beloucif, Meriem",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.671",
    doi = "10.18653/v1/2023.emnlp-main.671",
    pages = "10892--10902",
    abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.",
}

```