Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Languages:
Spanish
Size:
10K - 100K
License:
File size: 15,667 Bytes
5b9c493 2ed1cb6 5b9c493 2ed1cb6 5b9c493 2ed1cb6 a3f0141 2ed1cb6 a3f0141 2ed1cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
---
dataset_info:
features:
- name: tokens
sequence: string
- name: tags
sequence:
class_label:
names:
'0': O
'1': r0:arg0|agt
'2': r0:arg0|cau
'3': r0:arg0|exp
'4': r0:arg0|pat
'5': r0:arg0|src
'6': r0:arg1|ext
'7': r0:arg1|loc
'8': r0:arg1|pat
'9': r0:arg1|tem
'10': r0:arg2|atr
'11': r0:arg2|ben
'12': r0:arg2|efi
'13': r0:arg2|exp
'14': r0:arg2|ext
'15': r0:arg2|ins
'16': r0:arg2|loc
'17': r0:arg2|tem
'18': r0:arg3|ben
'19': r0:arg3|ein
'20': r0:arg3|exp
'21': r0:arg3|fin
'22': r0:arg3|ins
'23': r0:arg3|loc
'24': r0:arg3|ori
'25': r0:arg4|des
'26': r0:arg4|efi
'27': r0:argM|LOC
'28': r0:argM|adv
'29': r0:argM|atr
'30': r0:argM|cau
'31': r0:argM|ext
'32': r0:argM|fin
'33': r0:argM|ins
'34': r0:argM|loc
'35': r0:argM|mnr
'36': r0:argM|tmp
'37': r0:root
'38': r10:arg0|agt
'39': r10:arg1|pat
'40': r10:arg1|tem
'41': r10:arg2|atr
'42': r10:arg2|ben
'43': r10:arg2|efi
'44': r10:arg2|loc
'45': r10:arg3|ben
'46': r10:arg4|des
'47': r10:argM|adv
'48': r10:argM|atr
'49': r10:argM|fin
'50': r10:argM|loc
'51': r10:argM|tmp
'52': r10:root
'53': r11:arg0|agt
'54': r11:arg0|cau
'55': r11:arg1|pat
'56': r11:arg1|tem
'57': r11:arg2|atr
'58': r11:arg2|ben
'59': r11:arg2|loc
'60': r11:arg4|des
'61': r11:argM|adv
'62': r11:argM|loc
'63': r11:argM|mnr
'64': r11:argM|tmp
'65': r11:root
'66': r12:arg0|agt
'67': r12:arg0|cau
'68': r12:arg1|pat
'69': r12:arg1|tem
'70': r12:arg2|atr
'71': r12:argM|adv
'72': r12:argM|cau
'73': r12:argM|loc
'74': r12:argM|tmp
'75': r12:root
'76': r13:arg0|agt
'77': r13:arg0|cau
'78': r13:arg1|pat
'79': r13:arg1|tem
'80': r13:arg2|atr
'81': r13:arg2|ben
'82': r13:argM|adv
'83': r13:argM|atr
'84': r13:argM|loc
'85': r13:root
'86': r14:arg0|agt
'87': r14:arg1|pat
'88': r14:arg2|ben
'89': r14:argM|adv
'90': r14:argM|loc
'91': r14:argM|mnr
'92': r14:root
'93': r15:arg0|cau
'94': r15:arg1|tem
'95': r15:arg2|atr
'96': r15:arg3|ben
'97': r15:root
'98': r16:arg0|agt
'99': r16:arg0|cau
'100': r16:arg1|pat
'101': r16:arg1|tem
'102': r16:argM|loc
'103': r16:argM|tmp
'104': r16:root
'105': r1:arg0|agt
'106': r1:arg0|cau
'107': r1:arg0|exp
'108': r1:arg0|src
'109': r1:arg1|ext
'110': r1:arg1|loc
'111': r1:arg1|pat
'112': r1:arg1|tem
'113': r1:arg2|atr
'114': r1:arg2|ben
'115': r1:arg2|efi
'116': r1:arg2|exp
'117': r1:arg2|ext
'118': r1:arg2|ins
'119': r1:arg2|loc
'120': r1:arg3|atr
'121': r1:arg3|ben
'122': r1:arg3|des
'123': r1:arg3|ein
'124': r1:arg3|exp
'125': r1:arg3|fin
'126': r1:arg3|ins
'127': r1:arg3|ori
'128': r1:arg4|des
'129': r1:arg4|efi
'130': r1:argM|adv
'131': r1:argM|atr
'132': r1:argM|cau
'133': r1:argM|ext
'134': r1:argM|fin
'135': r1:argM|ins
'136': r1:argM|loc
'137': r1:argM|mnr
'138': r1:argM|tmp
'139': r1:root
'140': r2:arg0|agt
'141': r2:arg0|cau
'142': r2:arg0|exp
'143': r2:arg0|src
'144': r2:arg1|ext
'145': r2:arg1|loc
'146': r2:arg1|pat
'147': r2:arg1|tem
'148': r2:arg2|atr
'149': r2:arg2|ben
'150': r2:arg2|efi
'151': r2:arg2|exp
'152': r2:arg2|ext
'153': r2:arg2|ins
'154': r2:arg2|loc
'155': r2:arg3|atr
'156': r2:arg3|ben
'157': r2:arg3|ein
'158': r2:arg3|exp
'159': r2:arg3|fin
'160': r2:arg3|loc
'161': r2:arg3|ori
'162': r2:arg4|des
'163': r2:arg4|efi
'164': r2:argM|adv
'165': r2:argM|atr
'166': r2:argM|cau
'167': r2:argM|ext
'168': r2:argM|fin
'169': r2:argM|ins
'170': r2:argM|loc
'171': r2:argM|mnr
'172': r2:argM|tmp
'173': r2:root
'174': r3:arg0|agt
'175': r3:arg0|cau
'176': r3:arg0|exp
'177': r3:arg0|src
'178': r3:arg1|ext
'179': r3:arg1|loc
'180': r3:arg1|pat
'181': r3:arg1|tem
'182': r3:arg2|atr
'183': r3:arg2|ben
'184': r3:arg2|efi
'185': r3:arg2|exp
'186': r3:arg2|ext
'187': r3:arg2|ins
'188': r3:arg2|loc
'189': r3:arg2|tem
'190': r3:arg3|ben
'191': r3:arg3|ein
'192': r3:arg3|fin
'193': r3:arg3|loc
'194': r3:arg3|ori
'195': r3:arg4|des
'196': r3:arg4|efi
'197': r3:argM|adv
'198': r3:argM|atr
'199': r3:argM|cau
'200': r3:argM|ext
'201': r3:argM|fin
'202': r3:argM|ins
'203': r3:argM|loc
'204': r3:argM|mnr
'205': r3:argM|tmp
'206': r3:root
'207': r4:arg0|agt
'208': r4:arg0|cau
'209': r4:arg0|exp
'210': r4:arg0|src
'211': r4:arg1|ext
'212': r4:arg1|loc
'213': r4:arg1|pat
'214': r4:arg1|tem
'215': r4:arg2|atr
'216': r4:arg2|ben
'217': r4:arg2|efi
'218': r4:arg2|exp
'219': r4:arg2|ext
'220': r4:arg2|ins
'221': r4:arg2|loc
'222': r4:arg3|ben
'223': r4:arg3|ein
'224': r4:arg3|exp
'225': r4:arg3|fin
'226': r4:arg3|ori
'227': r4:arg4|des
'228': r4:arg4|efi
'229': r4:argM|adv
'230': r4:argM|atr
'231': r4:argM|cau
'232': r4:argM|ext
'233': r4:argM|fin
'234': r4:argM|ins
'235': r4:argM|loc
'236': r4:argM|mnr
'237': r4:argM|tmp
'238': r4:root
'239': r5:arg0|agt
'240': r5:arg0|cau
'241': r5:arg1|ext
'242': r5:arg1|loc
'243': r5:arg1|pat
'244': r5:arg1|tem
'245': r5:arg2|atr
'246': r5:arg2|ben
'247': r5:arg2|efi
'248': r5:arg2|exp
'249': r5:arg2|ext
'250': r5:arg2|loc
'251': r5:arg3|ben
'252': r5:arg3|ein
'253': r5:arg3|fin
'254': r5:arg3|ins
'255': r5:arg3|ori
'256': r5:arg4|des
'257': r5:arg4|efi
'258': r5:argM|adv
'259': r5:argM|atr
'260': r5:argM|cau
'261': r5:argM|ext
'262': r5:argM|fin
'263': r5:argM|loc
'264': r5:argM|mnr
'265': r5:argM|tmp
'266': r5:root
'267': r6:arg0|agt
'268': r6:arg0|cau
'269': r6:arg1|loc
'270': r6:arg1|pat
'271': r6:arg1|tem
'272': r6:arg2|atr
'273': r6:arg2|ben
'274': r6:arg2|efi
'275': r6:arg2|exp
'276': r6:arg2|ext
'277': r6:arg2|loc
'278': r6:arg3|ben
'279': r6:arg3|ori
'280': r6:arg4|des
'281': r6:argM|adv
'282': r6:argM|atr
'283': r6:argM|cau
'284': r6:argM|ext
'285': r6:argM|fin
'286': r6:argM|loc
'287': r6:argM|mnr
'288': r6:argM|tmp
'289': r6:root
'290': r7:arg0|agt
'291': r7:arg0|cau
'292': r7:arg1|loc
'293': r7:arg1|pat
'294': r7:arg1|tem
'295': r7:arg2|atr
'296': r7:arg2|ben
'297': r7:arg2|efi
'298': r7:arg2|loc
'299': r7:arg3|ben
'300': r7:arg3|exp
'301': r7:arg3|fin
'302': r7:arg3|ori
'303': r7:arg4|des
'304': r7:argM|adv
'305': r7:argM|atr
'306': r7:argM|cau
'307': r7:argM|fin
'308': r7:argM|ins
'309': r7:argM|loc
'310': r7:argM|mnr
'311': r7:argM|tmp
'312': r7:root
'313': r8:arg0|agt
'314': r8:arg0|cau
'315': r8:arg0|src
'316': r8:arg1|pat
'317': r8:arg1|tem
'318': r8:arg2|atr
'319': r8:arg2|ben
'320': r8:arg2|ext
'321': r8:arg2|loc
'322': r8:arg3|ori
'323': r8:arg4|des
'324': r8:argM|adv
'325': r8:argM|cau
'326': r8:argM|ext
'327': r8:argM|fin
'328': r8:argM|loc
'329': r8:argM|mnr
'330': r8:argM|tmp
'331': r8:root
'332': r9:arg0|agt
'333': r9:arg0|cau
'334': r9:arg1|pat
'335': r9:arg1|tem
'336': r9:arg2|atr
'337': r9:arg2|ben
'338': r9:arg2|ins
'339': r9:arg2|loc
'340': r9:arg4|des
'341': r9:argM|adv
'342': r9:argM|cau
'343': r9:argM|fin
'344': r9:argM|loc
'345': r9:argM|mnr
'346': r9:argM|tmp
'347': r9:root
- name: ids
dtype: int64
splits:
- name: train
num_bytes: 7401018
num_examples: 14328
- name: test
num_bytes: 876498
num_examples: 1724
- name: dev
num_bytes: 870737
num_examples: 1654
download_size: 2426369
dataset_size: 9148253
license: cc-by-nc-sa-3.0
task_categories:
- token-classification
language:
- es
pretty_name: SpanishSRL
size_categories:
- 10K<n<100K
---
# Dataset Card for SpanishSRL
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Citation Information](#citation-information)
## Dataset Description
- **Repository:** [SpanishSRL Project Hub](https://github.com/mbruton0426/GalicianSRL)
- **Paper:** To be updated
- **Point of Contact:** [Micaella Bruton](mailto:micaellabruton@gmail.com)
### Dataset Summary
The SpanishSRL dataset is a Spanish-language dataset of tokenized sentences and the semantic role for each token within a sentence. Standard semantic roles for Spanish are identified as well as verbal root; standard roles include "arg0|[agt, cau, exp, src]", "arg1|[ext, loc, pat, tem]", "arg2[atr, ben, efi, exp, ext, ins, loc]", "arg3[ben, ein, fin, ori]", "arg4[des, efi]", and "argM[adv, atr, cau, ext, fin, ins, loc, mnr, tmp]".
### Languages
The text in the dataset is in Spanish.
## Dataset Structure
### Data Instances
A typical data point comprises a tokenized sentence, tags for each token, and a sentence id number. An example from the SpanishSRL dataset looks as follows:
```
{'tokens': ['Ante', 'unas', 'mil', 'personas', ',', 'entre', 'ellas', 'la', 'ministra', 'de', 'Ciencia_y_Tecnología', ',', 'Anna_Birulés', ',', 'el', 'alcalde', 'de', 'Barcelona', ',', 'Joan_Clos', ',', 'la', 'Delegada', 'del', 'Gobierno', ',', 'Julia_García_Valdecasas', ',', 'y', 'una', 'nutrida', 'representación', 'del', 'gobierno', 'catalán', ',', 'Pujol', 'dio', 'un', 'toque', 'de', 'alerta', 'sobre', 'el', 'aumento', 'de', 'los', 'accidentes', 'laborales', '.'],
'tags': [34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 37, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0],
'ids': 66}
```
Tags are assigned an id number according to the index of its label as listed in:
```python
>>> dataset['train'].features['tags'].feature.names
```
### Data Fields
- `tokens`: a list of strings
- `tags`: a list of integers
- `ids`: a sentence id, as an integer
### Data Splits
The data is split into a development, training, and test set. The final structure and split sizes are as follow:
```
DatasetDict({
dev: Dataset({
features: ['tokens', 'tags', 'ids'],
num_rows: 1654
})
test: Dataset({
features: ['tokens', 'tags', 'ids'],
num_rows: 1724
})
train: Dataset({
features: ['tokens', 'tags', 'ids'],
num_rows: 14328
})
})
```
## Dataset Creation
### Curation Rationale
SpanishSRL was built to test the verbal indexing method as introduced in the publication listed in the citation against an established baseline.
### Source Data
#### Initial Data Collection and Normalization
Data was collected from the [2009 CoNLL Shared Task](https://ufal.mff.cuni.cz/conll2009-st/). For more information, please refer to the publication listed in the citation.
## Additional Information
### Dataset Curators
The dataset was created by Micaella Bruton, as part of her Master's thesis.
### Citation Information
```
@inproceedings{bruton-beloucif-2023-bertie,
title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician",
author = "Bruton, Micaella and
Beloucif, Meriem",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.671",
doi = "10.18653/v1/2023.emnlp-main.671",
pages = "10892--10902",
abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.",
}
``` |