File size: 7,159 Bytes
21d5ed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f1ee86
 
21d5ed0
9f1ee86
 
21d5ed0
9f1ee86
 
 
 
21d5ed0
 
 
 
 
 
 
 
 
 
ab04ee2
 
 
863a068
 
ab04ee2
 
863a068
 
 
 
 
 
 
 
 
 
ab04ee2
 
 
 
 
 
 
 
 
 
 
 
863a068
ab04ee2
863a068
ab04ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
dataset_info:
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: transcripts
    dtype: string
  - name: input_features
    sequence:
      sequence: float32
  - name: labels
    sequence: int64
  splits:
  - name: train
    num_bytes: 50570714587.90649
    num_examples: 43818
  - name: test
    num_bytes: 6322204904.663649
    num_examples: 5478
  - name: valid
    num_bytes: 6321050796.429865
    num_examples: 5477
  download_size: 21857670089
  dataset_size: 63213970289.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: valid
    path: data/valid-*
---

### 컬럼 제거가 필요해요
- 추후에 제거 예정이에요.
- 사용자 변수 설정을 잘못해서, set-2에 덮어씌워졌어요.
- 이미 set-2까지 파인튜닝이 끝났기 때문에, 레포지토리 이름을 set-3로 바꿨어요.
- 다음 코드를 통해 만들었어요.
```
# !pip install -U accelerate
# !pip install -U transformers
# !pip install datasets
# !pip install evaluate
# !pip install mlflow
# !pip install transformers[torch]
# !pip install jiwer
# !pip install nlptutti


import os
import json
from pydub import AudioSegment
from tqdm import tqdm
import re
from datasets import Audio, Dataset, DatasetDict, load_from_disk, concatenate_datasets
from transformers import WhisperFeatureExtractor, WhisperTokenizer
import pandas as pd
import shutil

# 사용자 지정 변수를 설정해요.

output_dir = './set_3'                     # 가공된 데이터셋이 저장될 폴더
token = "hf_"                     # 허깅페이스 토큰
CACHE_DIR = './.cache'                                # 허깅페이스 캐시 저장소 지정
dataset_name = "maxseats/aihub-464-preprocessed-680GB-set-2"              # 허깅페이스에 올라갈 데이터셋 이름
model_name = "SungBeom/whisper-small-ko"                            # 대상 모델 / "openai/whisper-base"


batch_size = 2000   # 배치사이즈 지정, 8000이면 에러 발생
os.environ['HF_DATASETS_CACHE'] = CACHE_DIR

'''
가공된 mp3, txt 데이터를 학습 가능한 허깅페이스 데이터셋 형태로 변환해요.
'''

# 캐시 디렉토리 설정
os.environ['HF_HOME'] = CACHE_DIR
os.environ["HF_DATASETS_CACHE"] = CACHE_DIR
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name, cache_dir=CACHE_DIR)
tokenizer = WhisperTokenizer.from_pretrained(model_name, language="Korean", task="transcribe", cache_dir=CACHE_DIR)

def exclude_json_files(file_names: list) -> list:
    # .json으로 끝나는 원소 제거
    return [file_name for file_name in file_names if not file_name.endswith('.json')]


def get_label_list(directory):
    # 빈 리스트 생성
    label_files = []

    # 디렉토리 내 파일 목록 불러오기
    for filename in os.listdir(directory):
        # 파일 이름이 '.txt'로 끝나는지 확인
        if filename.endswith('.txt'):
            label_files.append(os.path.join(directory, filename))

    return label_files


def get_audio_list(directory):
    # 빈 리스트 생성
    audio_files = []

    # 디렉토리 내 파일 목록 불러오기
    for filename in os.listdir(directory):
        # 파일 이름이 '.wav'나 '.mp3'로 끝나는지 확인
        if filename.endswith('.wav') or filename.endswith('mp3'):
            audio_files.append(os.path.join(directory, filename))

    return audio_files

def prepare_dataset(batch):
    # 오디오 파일을 16kHz로 로드
    audio = batch["audio"]

    # input audio array로부터 log-Mel spectrogram 변환
    batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]


    # target text를 label ids로 변환
    batch["labels"] = tokenizer(batch["transcripts"]).input_ids
    
    # 'audio'와 'transcripts' 컬럼 제거
    # del batch["audio"]
    # del batch["transcripts"]
    
    # 'input_features'와 'labels'만 포함한 새로운 딕셔너리 생성
    return {"input_features": batch["input_features"], "labels": batch["labels"]}


label_data = get_label_list(output_dir)
audio_data = get_audio_list(output_dir)

transcript_list = []
for label in tqdm(label_data):
    with open(label, 'r', encoding='UTF8') as f:
        line = f.readline()
        transcript_list.append(line)

df = pd.DataFrame(data=transcript_list, columns = ["transcript"]) # 정답 label
df['audio_data'] = audio_data # 오디오 파일 경로

# 오디오 파일 경로를 dict의 "audio" 키의 value로 넣고 이를 데이터셋으로 변환
# 이때, Whisper가 요구하는 사양대로 Sampling rate는 16,000으로 설정한다.
# 데이터셋 배치 처리
batches = []
print("len(df) : ", len(df))
for i in tqdm(range(0, len(df), batch_size), desc="Processing batches"):
    batch_df = df.iloc[i:i+batch_size]
    ds = Dataset.from_dict(
        {"audio": [path for path in batch_df["audio_data"]],
         "transcripts": [transcript for transcript in batch_df["transcript"]]}
    ).cast_column("audio", Audio(sampling_rate=16000))
    
    batch_datasets = DatasetDict({"batch": ds})
    batch_datasets = batch_datasets.map(prepare_dataset, num_proc=1)
    batch_datasets.save_to_disk(os.path.join(CACHE_DIR, f'batch_{i//batch_size}'))
    batches.append(os.path.join(CACHE_DIR, f'batch_{i//batch_size}'))
    print(f"Processed and saved batch {i//batch_size}")

# 모든 배치 데이터셋 로드
loaded_batches = [load_from_disk(path) for path in batches]

# 배치 데이터셋을 하나로 병합
full_dataset = concatenate_datasets([batch['batch'] for batch in loaded_batches])

# 데이터셋을 훈련 데이터와 테스트 데이터, 밸리데이션 데이터로 분할
train_testvalid = full_dataset.train_test_split(test_size=0.2)
test_valid = train_testvalid["test"].train_test_split(test_size=0.5)
datasets = DatasetDict(
    {"train": train_testvalid["train"],
     "test": test_valid["test"],
     "valid": test_valid["train"]}
)

# # 열 제거 전 데이터셋 크기 확인
# print(f"Dataset sizes before column removal: Train: {len(datasets['train'])}, Test: {len(datasets['test'])}, Valid: {len(datasets['valid'])}")

# datasets = datasets.remove_columns(['audio', 'transcripts'])  # 불필요한 부분 제거

# # 열 제거 후 데이터셋 크기 확인
# print(f"Dataset sizes after column removal: Train: {len(datasets['train'])}, Test: {len(datasets['test'])}, Valid: {len(datasets['valid'])}")

# #datasets = datasets.remove_columns(['audio', 'transcripts']) # 불필요한 부분 제거


'''
허깅페이스 로그인 후, 최종 데이터셋을 업로드해요.
'''

while True:
    
    if token =="exit":
        break
    
    try:
        datasets.push_to_hub(dataset_name, token=token)
        print(f"Dataset {dataset_name} pushed to hub successfully. 넘나 축하.")
        break
    except Exception as e:
        print(f"Failed to push dataset: {e}")
        token = input("Please enter your Hugging Face API token: ")

# 캐시 디렉토리 삭제
shutil.rmtree(CACHE_DIR)
print(f"Deleted cache directory: {CACHE_DIR}")
```