Datasets:
File size: 7,541 Bytes
ac679a1 b6472ef 169d23e ac679a1 5b5646a ac679a1 1ee1eca 3b30db5 2ac89de 3b30db5 2ac89de 3b30db5 2ac89de 19e0336 2ac89de 3b30db5 ac679a1 d306d9f ac679a1 5b5646a ac679a1 888a2ef 04fae7a 3c6bb32 ec60e4b 04fae7a ec60e4b 04fae7a ec60e4b 04fae7a 5b5646a 04fae7a 5b5646a 04fae7a 5b5646a 04fae7a 5b5646a 04fae7a 5b5646a 68da5c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
version: 1.0.0
license: cc-by-sa-4.0
task_categories:
- tabular-classification
language:
- en
pretty_name: MolData
size_categories:
- 1M<n<10M
tags:
- drug discovery
- bioassay
dataset_summary: A comprehensive disease and target-based dataset with roughly 170 million drug screening results from 1.4 million
unique molecules and 600 assays which are collected from PubChem to accelerate molecular machine learning for better drug discovery.
citation: "@article{KeshavarziArshadi2022,\n title = {MolData, a molecular benchmark\
\ for disease and target based machine learning},\n volume = {14},\n ISSN = {1758-2946},\n\
\ url = {http://dx.doi.org/10.1186/s13321-022-00590-y},\n DOI = {10.1186/s13321-022-00590-y},\n\
\ number = {1},\n journal = {Journal of Cheminformatics},\n publisher = {Springer\
\ Science and Business Media LLC},\n author = {Keshavarzi Arshadi, Arash and Salem,\
\ Milad and Firouzbakht, Arash and Yuan, Jiann Shiun},\n year = {2022},\n month\
\ = mar \n}"
dataset_info:
- config_name: MolData
features:
- name: SMILES
dtype: string
- name: PUBCHEM_CID
dtype: int64
- name: split
dtype: string
- name: AID
dtype: string
- name: Y
dtype: int64
description: 'Binary classification (0/1) '
splits:
- name: train
num_bytes: 12634275804
num_examples: 138547273
- name: test
num_bytes: 1578698654
num_examples: 17069726
- name: validation
num_bytes: 1254512486
num_examples: 12728449
download_size: 5293486933
dataset_size: 15467486944
- config_name: default
features:
- name: SMILES
dtype: string
- name: PUBCHEM_CID
dtype: int64
- name: split
dtype: string
- name: AID
dtype: string
- name: Y
dtype: int64
splits:
- name: train
num_bytes: 12634275804
num_examples: 138547273
- name: test
num_bytes: 1578698654
num_examples: 17069726
- name: validation
num_bytes: 1254512486
num_examples: 12728449
download_size: 5293486933
dataset_size: 15467486944
configs:
- config_name: MolData
data_files:
- split: train
path: MolData/train-*
- split: test
path: MolData/test-*
- split: validation
path: MolData/validation-*
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
---
# MolData
[MolData](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00590-y) is a comprehensive disease and target-based dataset collected from PubChem.
The dataset contains 1.4 million unique molecules, and it is one the largest efforts to date for democratizing the molecular machine learning.
This is a mirror of the [Official Github repo](https://github.com/LumosBio/MolData/tree/main/Data) where the dataset was uploaded in 2021.
## Preprocessing
We utilized the raw data uploaded on [Github](https://github.com/LumosBio/MolData) and performed several preprocessing:
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
2. Formatting (from wide form to long form)
3. Rename the columns
4. Split the dataset (train, test, validation)
If you would like to try these processes with the original dataset,
please follow the instructions in the [preprocessing script](https://huggingface.co/datasets/maomlab/MolData/blob/main/MolData_preprocessing.py) file located in our MolData repository.
## Quickstart Usage
### Load a dataset in python
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load the `MolData` datasets, e.g.,
>>> MolData = datasets.load_dataset("maomlab/MolData", name = "MolData")
Generating train split: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 138547273/138547273 [02:07<00:00, 1088043.12 examples/s]
Generating test split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 17069726/17069726 [00:16<00:00, 1037407.67 examples/s]
Generating validation split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12728449/12728449 [00:11<00:00, 1093675.24 examples/s]
and inspecting the loaded dataset
>>> MolData
DatasetDict({
train: Dataset({
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
num_rows: 138547273
})
test: Dataset({
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
num_rows: 17069726
})
validation: Dataset({
features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'],
num_rows: 12728449
})
})
### Use a dataset to train a model
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
Split and evaluate the catboost model
split_dataset = load_dataset('maomlab/MolData', name = 'MolData')
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_classifier",
"config": {
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
"y_features": ['Y']}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
classification_suite = load_suite("classification")
scores = classification_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_classifier::Y"])
### Citation
@article{KeshavarziArshadi2022,
title = {MolData, a molecular benchmark for disease and target based machine learning},
volume = {14},
ISSN = {1758-2946},
url = {http://dx.doi.org/10.1186/s13321-022-00590-y},
DOI = {10.1186/s13321-022-00590-y},
number = {1},
journal = {Journal of Cheminformatics},
publisher = {Springer Science and Business Media LLC},
author = {Keshavarzi Arshadi, Arash and Salem, Milad and Firouzbakht, Arash and Yuan, Jiann Shiun},
year = {2022},
month = mar
} |