Datasets:
File size: 9,872 Bytes
88adb36 c52364f c36514a c52364f 88adb36 c52364f 88adb36 26b5a5e c52364f 0613fc4 c52364f 0613fc4 c52364f 0613fc4 c52364f 0613fc4 c52364f 0613fc4 c52364f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
## Script to sanitize and split AggregatorAdvisor dataset
# 1. Load modules
pip install rdkit
pip install molvs
import pandas as pd
import numpy as np
import urllib.request
import tqdm
import rdkit
from rdkit import Chem
import molvs
standardizer = molvs.Standardizer()
fragment_remover = molvs.fragment.FragmentRemover()
# 2. Load the original dataset into a pandas DataFrame
# PLEASE download the 'raw_data.csv', which is the dataset from the paper, and run the code
# https://huggingface.co/datasets/maomlab/AggregatorAdvisor/blob/main/raw_data.csv
AA = pd.read_csv('raw_data.csv') # AA is an abbreviation of Aggregator Advisor
#3. Resolve SMILES parse error
# Smiles is 'None', found the compound on ChemSpider
# Smiles displayed 'Explicit valence for atom # 2 O, 3, is greater than permitted'
# https://www.chemspider.com/Chemical-Structure.17588253.html?rid=026abd00-5d7b-4c7a-b279-3ba43ab46203
AA.loc[AA['smiles'] == '[O-][N+](=[O-])C1=CC=CC(=C1)C2=NC(CO2)C3=CC=CC=C3' , 'smiles'] = 'c1ccc(cc1)C2COC(=N2)c3cccc(c3)[N+](=O)[O-]'
# Smiles is 'None', found the compound on ChemSpider
# Smiles displayed 'Explicit valence for atom # 2 O, 3, is greater than permitted'
# https://www.chemspider.com/Chemical-Structure.17588254.html?rid=0f94ced5-dee6-4274-b0c5-796500b40be7
AA.loc[AA['smiles'] == '[O-][N+](=[O-])C1=CC=CC(=C1)C2=NCCC(O2)C3=CC=CC=C3', 'smiles'] = 'c1ccc(cc1)C2CCN=C(O2)c3cccc(c3)[N+](=O)[O-]'
#4. Sanitize with MolVS and print problems
AA['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in AA['smiles']]
problems = []
for index, row in tqdm.tqdm(AA.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['substance_id'], result) )
# most are because it includes the salt form and/or it is not neutralized
for substance_id, alert in problems:
print(f"substance_id: {substance_id}, problem: {alert[0]}")
# Result interpretation
# - Can't kekulize mol: The error message means that kekulization would break the molecules down, so it couldn't proceed
# It doesn't mean that the molecules are bad, it just means that normalization failed
#5. Select columns and rename the dataset
AA.rename(columns={'X': 'new SMILES'}, inplace=True)
newAA = AA[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
#6. Import modules to split the dataset
import sys
from rdkit import DataStructs
from rdkit.Chem import AllChem as Chem
from rdkit.Chem import PandasTools
import scipy.spatial.distance as ssd
from scipy.cluster import hierarchy
#7. Split the dataset into test and train
#7. Split the dataset into test and train
class MolecularFingerprint:
def __init__(self, fingerprint):
self.fingerprint = fingerprint
def __str__(self):
return self.fingerprint.__str__()
def compute_fingerprint(molecule):
try:
fingerprint = Chem.GetMorganFingerprintAsBitVect(molecule, 2, nBits=1024)
result = np.zeros(len(fingerprint), np.int32)
DataStructs.ConvertToNumpyArray(fingerprint, result)
return MolecularFingerprint(result)
except:
print("Fingerprints for a structure cannot be calculated")
return None
def tanimoto_distances_yield(fingerprints, num_fingerprints):
for i in range(1, num_fingerprints):
yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
def butina_cluster(fingerprints, num_points, distance_threshold, reordering=False):
nbr_lists = [None] * num_points
for i in range(num_points):
nbr_lists[i] = []
dist_fun = tanimoto_distances_yield(fingerprints, num_points)
for i in range(1, num_points):
dists = next(dist_fun)
for j in range(i):
dij = dists[j]
if dij <= distance_threshold:
nbr_lists[i].append(j)
nbr_lists[j].append(i)
t_lists = [(len(y), x) for x, y in enumerate(nbr_lists)]
t_lists.sort(reverse=True)
res = []
seen = [0] * num_points
while t_lists:
_, idx = t_lists.pop(0)
if seen[idx]:
continue
t_res = [idx]
for nbr in nbr_lists[idx]:
if not seen[nbr]:
t_res.append(nbr)
seen[nbr] = 1
if reordering:
nbr_nbr = [nbr_lists[t] for t in t_res]
nbr_nbr = frozenset().union(*nbr_nbr)
for x, y in enumerate(t_lists):
y1 = y[1]
if seen[y1] or (y1 not in nbr_nbr):
continue
nbr_lists[y1] = set(nbr_lists[y1]).difference(t_res)
t_lists[x] = (len(nbr_lists[y1]), y1)
t_lists.sort(reverse=True)
res.append(tuple(t_res))
return tuple(res)
def hierarchal_cluster(fingerprints):
num_fingerprints = len(fingerprints)
av_cluster_size = 8
dists = []
for i in range(0, num_fingerprints):
sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
dists.append([1 - x for x in sims])
dis_array = ssd.squareform(dists)
Z = hierarchy.linkage(dis_array)
average_cluster_size = av_cluster_size
cluster_amount = int(num_fingerprints / average_cluster_size)
clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
clusters = list(clusters.transpose()[0])
cs = []
for i in range(max(clusters) + 1):
cs.append([])
for i in range(len(clusters)):
cs[clusters[i]].append(i)
return cs
def cluster_fingerprints(fingerprints, method="Auto"):
num_fingerprints = len(fingerprints)
if method == "Auto":
method = "TB" if num_fingerprints >= 10000 else "Hierarchy"
if method == "TB":
cutoff = 0.56
print("Butina clustering is selected. Dataset size is:", num_fingerprints)
clusters = butina_cluster(fingerprints, num_fingerprints, cutoff)
elif method == "Hierarchy":
print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
clusters = hierarchal_cluster(fingerprints)
return clusters
def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
try:
import math
smiles_column_name = dataframe.columns[smiles_col_index]
molecule = 'molecule'
fingerprint = 'fingerprint'
group = 'group'
testing = 'testing'
try:
PandasTools.AddMoleculeColumnToFrame(dataframe, smiles_column_name, molecule)
except:
print("Exception occurred during molecule generation...")
dataframe = dataframe.loc[dataframe[molecule].notnull()]
dataframe[fingerprint] = [compute_fingerprint(m) for m in dataframe[molecule]]
dataframe = dataframe.loc[dataframe[fingerprint].notnull()]
fingerprints = [Chem.GetMorganFingerprintAsBitVect(m, 2, nBits=2048) for m in dataframe[molecule]]
clusters = cluster_fingerprints(fingerprints, method=cluster_method)
dataframe.drop([molecule, fingerprint], axis=1, inplace=True)
last_training_index = int(math.ceil(len(dataframe) * fraction_to_train))
clustered = None
cluster_no = 0
mol_count = 0
for cluster in clusters:
cluster_no = cluster_no + 1
try:
one_cluster = dataframe.iloc[list(cluster)].copy()
except:
print("Wrong indexes in Cluster: %i, Molecules: %i" % (cluster_no, len(cluster)))
continue
one_cluster.loc[:, 'ClusterNo'] = cluster_no
one_cluster.loc[:, 'MolCount'] = len(cluster)
if (mol_count < last_training_index) or (cluster_no < 2):
one_cluster.loc[:, group] = 'training'
else:
one_cluster.loc[:, group] = testing
mol_count += len(cluster)
clustered = pd.concat([clustered, one_cluster], ignore_index=True)
if split_for_exact_fraction:
print("Adjusting test to train ratio. It may split one cluster")
clustered.loc[last_training_index + 1:, group] = testing
print("Clustering finished. Training set size is %i, Test set size is %i, Fraction %.2f" %
(len(clustered.loc[clustered[group] != testing]),
len(clustered.loc[clustered[group] == testing]),
len(clustered.loc[clustered[group] == testing]) / len(clustered)))
except KeyboardInterrupt:
print("Clustering interrupted.")
return clustered
def realistic_split(df, smile_col_index, frac_train, split_for_exact_frac=True, cluster_method = "Auto"):
return split_dataframe(df.copy(), smile_col_index, frac_train, split_for_exact_frac, cluster_method=cluster_method)
def split_df_into_train_and_test_sets(df):
df['group'] = df['group'].str.replace(' ', '_')
df['group'] = df['group'].str.lower()
train = df[df['group'] == 'training']
test = df[df['group'] == 'testing']
return train, test
# 8. Test and train datasets have been made
smiles_index = 0 # Because smiles is in the first column
realistic = realistic_split(newAA.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto")
realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
#9. Select columns and name the datasets
selected_columns = realistic_train[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
selected_columns.to_csv("AggregatorAdvisor_train.csv", index=False)
selected_columns = realistic_test[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
selected_columns.to_csv("AggregatorAdvisor_test.csv", index=False)
|