Datasets:
haneulpark
commited on
Update Preprocessing Script.py
Browse files- Preprocessing Script.py +214 -1
Preprocessing Script.py
CHANGED
@@ -15,6 +15,13 @@ import molvs
|
|
15 |
standardizer = molvs.Standardizer()
|
16 |
fragment_remover = molvs.fragment.FragmentRemover()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
#3. Resolve SMILES parse error
|
19 |
|
20 |
# Smiles is 'None', found the compound on ChemSpider
|
@@ -48,7 +55,213 @@ for index, row in tqdm.tqdm(AA.iterrows()):
|
|
48 |
for substance_id, alert in problems:
|
49 |
print(f"substance_id: {substance_id}, problem: {alert[0]}")
|
50 |
|
|
|
|
|
|
|
|
|
51 |
#5. Select columns and rename the dataset
|
52 |
|
53 |
AA.rename(columns={'X': 'new SMILES'}, inplace=True)
|
54 |
-
AA[['new SMILES', 'substance_id', 'aggref_index', 'logP']].to_csv('AggregatorAdvisor.csv', index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
standardizer = molvs.Standardizer()
|
16 |
fragment_remover = molvs.fragment.FragmentRemover()
|
17 |
|
18 |
+
# 2. Load the original dataset into a pandas DataFrame
|
19 |
+
|
20 |
+
# PLEASE download the 'raw_data.csv' first and run the code
|
21 |
+
# https://huggingface.co/datasets/maomlab/AggregatorAdvisor/blob/main/raw_data.csv
|
22 |
+
|
23 |
+
AA = pd.read_csv('raw_data.csv') # AA is an abbreviation of Aggregator Advisor
|
24 |
+
|
25 |
#3. Resolve SMILES parse error
|
26 |
|
27 |
# Smiles is 'None', found the compound on ChemSpider
|
|
|
55 |
for substance_id, alert in problems:
|
56 |
print(f"substance_id: {substance_id}, problem: {alert[0]}")
|
57 |
|
58 |
+
# Result interpretation
|
59 |
+
# - Can't kekulize mol: The error message means that kekulization would break the molecules down, so it couldn't proceed
|
60 |
+
# It doesn't mean that the molecules are bad, it just means that normalization failed
|
61 |
+
|
62 |
#5. Select columns and rename the dataset
|
63 |
|
64 |
AA.rename(columns={'X': 'new SMILES'}, inplace=True)
|
65 |
+
AA[['new SMILES', 'substance_id', 'aggref_index', 'logP']].to_csv('AggregatorAdvisor.csv', index=False)
|
66 |
+
|
67 |
+
#6. Import modules to split the dataset
|
68 |
+
|
69 |
+
import sys
|
70 |
+
from rdkit import DataStructs
|
71 |
+
from rdkit.Chem import AllChem as Chem
|
72 |
+
from rdkit.Chem import PandasTools
|
73 |
+
import scipy.spatial.distance as ssd
|
74 |
+
from scipy.cluster import hierarchy
|
75 |
+
|
76 |
+
#7. Split the dataset into test and train
|
77 |
+
|
78 |
+
class MolecularFingerprint:
|
79 |
+
def __init__(self, fingerprint):
|
80 |
+
self.fingerprint = fingerprint
|
81 |
+
|
82 |
+
def __str__(self):
|
83 |
+
return self.fingerprint.__str__()
|
84 |
+
|
85 |
+
def compute_fingerprint(molecule):
|
86 |
+
try:
|
87 |
+
fingerprint = Chem.GetMorganFingerprintAsBitVect(molecule, 2, nBits=1024)
|
88 |
+
result = np.zeros(len(fingerprint), np.int32)
|
89 |
+
DataStructs.ConvertToNumpyArray(fingerprint, result)
|
90 |
+
return MolecularFingerprint(result)
|
91 |
+
except:
|
92 |
+
print("Fingerprints for a structure cannot be calculated")
|
93 |
+
return None
|
94 |
+
|
95 |
+
def tanimoto_distances_yield(fingerprints, num_fingerprints):
|
96 |
+
for i in range(1, num_fingerprints):
|
97 |
+
yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
|
98 |
+
|
99 |
+
def butina_cluster(fingerprints, num_points, distance_threshold, reordering=False):
|
100 |
+
nbr_lists = [None] * num_points
|
101 |
+
for i in range(num_points):
|
102 |
+
nbr_lists[i] = []
|
103 |
+
|
104 |
+
dist_fun = tanimoto_distances_yield(fingerprints, num_points)
|
105 |
+
for i in range(1, num_points):
|
106 |
+
dists = next(dist_fun)
|
107 |
+
|
108 |
+
for j in range(i):
|
109 |
+
dij = dists[j]
|
110 |
+
if dij <= distance_threshold:
|
111 |
+
nbr_lists[i].append(j)
|
112 |
+
nbr_lists[j].append(i)
|
113 |
+
|
114 |
+
t_lists = [(len(y), x) for x, y in enumerate(nbr_lists)]
|
115 |
+
t_lists.sort(reverse=True)
|
116 |
+
|
117 |
+
res = []
|
118 |
+
seen = [0] * num_points
|
119 |
+
while t_lists:
|
120 |
+
_, idx = t_lists.pop(0)
|
121 |
+
if seen[idx]:
|
122 |
+
continue
|
123 |
+
t_res = [idx]
|
124 |
+
for nbr in nbr_lists[idx]:
|
125 |
+
if not seen[nbr]:
|
126 |
+
t_res.append(nbr)
|
127 |
+
seen[nbr] = 1
|
128 |
+
if reordering:
|
129 |
+
nbr_nbr = [nbr_lists[t] for t in t_res]
|
130 |
+
nbr_nbr = frozenset().union(*nbr_nbr)
|
131 |
+
for x, y in enumerate(t_lists):
|
132 |
+
y1 = y[1]
|
133 |
+
if seen[y1] or (y1 not in nbr_nbr):
|
134 |
+
continue
|
135 |
+
nbr_lists[y1] = set(nbr_lists[y1]).difference(t_res)
|
136 |
+
t_lists[x] = (len(nbr_lists[y1]), y1)
|
137 |
+
t_lists.sort(reverse=True)
|
138 |
+
res.append(tuple(t_res))
|
139 |
+
return tuple(res)
|
140 |
+
|
141 |
+
def hierarchal_cluster(fingerprints):
|
142 |
+
|
143 |
+
num_finger_prints = len(fingerprints)
|
144 |
+
|
145 |
+
av_cluster_size = 8
|
146 |
+
dists = []
|
147 |
+
|
148 |
+
for i in range(0, num_fingerprints):
|
149 |
+
sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
|
150 |
+
dists.append([1 - x for x in sims])
|
151 |
+
|
152 |
+
dis_array = ssd.squareform(dists)
|
153 |
+
Z = hierarchy.linkage(dis_array)
|
154 |
+
average_cluster_size = av_cluster_size
|
155 |
+
cluster_amount = int(num_fingerprints / average_cluster_size)
|
156 |
+
clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
|
157 |
+
|
158 |
+
clusters = list(clusters.transpose()[0])
|
159 |
+
cs = []
|
160 |
+
for i in range(max(clusters) + 1):
|
161 |
+
cs.append([])
|
162 |
+
|
163 |
+
for i in range(len(clusters)):
|
164 |
+
cs[clusters[i]].append(i)
|
165 |
+
return cs
|
166 |
+
|
167 |
+
def cluster_fingerprints(fingerprints, method="Auto"):
|
168 |
+
num_fingerprints = len(fingerprints)
|
169 |
+
|
170 |
+
if method == "Auto":
|
171 |
+
method = "TB" if num_fingerprints >= 10000 else "Hierarchy"
|
172 |
+
|
173 |
+
if method == "TB":
|
174 |
+
cutoff = 0.56
|
175 |
+
print("Butina clustering is selected. Dataset size is:", num_fingerprints)
|
176 |
+
clusters = butina_cluster(fingerprints, num_fingerprints, cutoff)
|
177 |
+
|
178 |
+
return clusters
|
179 |
+
|
180 |
+
elif method == "Hierarchy":
|
181 |
+
print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
|
182 |
+
clusters = hierarchal_cluster(fingerprints, num_fingerprints, 0.56)
|
183 |
+
|
184 |
+
return clusters
|
185 |
+
|
186 |
+
def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
|
187 |
+
try:
|
188 |
+
import math
|
189 |
+
smiles_column_name = dataframe.columns[smiles_col_index]
|
190 |
+
molecule = 'molecule'
|
191 |
+
fingerprint = 'fingerprint'
|
192 |
+
group = 'group'
|
193 |
+
testing = 'testing'
|
194 |
+
|
195 |
+
try:
|
196 |
+
PandasTools.AddMoleculeColumnToFrame(dataframe, smiles_column_name, molecule)
|
197 |
+
except:
|
198 |
+
print("Exception occurred during molecule generation...")
|
199 |
+
|
200 |
+
dataframe = dataframe.loc[dataframe[molecule].notnull()]
|
201 |
+
dataframe[fingerprint] = [compute_fingerprint(m) for m in dataframe[molecule]]
|
202 |
+
dataframe = dataframe.loc[dataframe[fingerprint].notnull()]
|
203 |
+
|
204 |
+
fingerprints = [Chem.GetMorganFingerprintAsBitVect(m, 2, nBits=2048) for m in dataframe[molecule]]
|
205 |
+
clusters = cluster_fingerprints(fingerprints, method=cluster_method)
|
206 |
+
|
207 |
+
dataframe.drop([molecule, fingerprint], axis=1, inplace=True)
|
208 |
+
|
209 |
+
last_training_index = int(math.ceil(len(dataframe) * fraction_to_train))
|
210 |
+
clustered = None
|
211 |
+
cluster_no = 0
|
212 |
+
mol_count = 0
|
213 |
+
|
214 |
+
for cluster in clusters:
|
215 |
+
cluster_no = cluster_no + 1
|
216 |
+
try:
|
217 |
+
one_cluster = dataframe.iloc[list(cluster)].copy()
|
218 |
+
except:
|
219 |
+
print("Wrong indexes in Cluster: %i, Molecules: %i" % (cluster_no, len(cluster)))
|
220 |
+
continue
|
221 |
+
|
222 |
+
one_cluster.loc[:, 'ClusterNo'] = cluster_no
|
223 |
+
one_cluster.loc[:, 'MolCount'] = len(cluster)
|
224 |
+
|
225 |
+
if (mol_count < last_training_index) or (cluster_no < 2):
|
226 |
+
one_cluster.loc[:, group] = 'training'
|
227 |
+
else:
|
228 |
+
one_cluster.loc[:, group] = testing
|
229 |
+
|
230 |
+
mol_count += len(cluster)
|
231 |
+
clustered = pd.concat([clustered, one_cluster], ignore_index=True)
|
232 |
+
|
233 |
+
if split_for_exact_fraction:
|
234 |
+
print("Adjusting test to train ratio. It may split one cluster")
|
235 |
+
clustered.loc[last_training_index + 1:, group] = testing
|
236 |
+
|
237 |
+
print("Clustering finished. Training set size is %i, Test set size is %i, Fraction %.2f" %
|
238 |
+
(len(clustered.loc[clustered[group] != testing]),
|
239 |
+
len(clustered.loc[clustered[group] == testing]),
|
240 |
+
len(clustered.loc[clustered[group] == testing]) / len(clustered)))
|
241 |
+
|
242 |
+
except KeyboardInterrupt:
|
243 |
+
print("Clustering interrupted.")
|
244 |
+
|
245 |
+
return clustered
|
246 |
+
|
247 |
+
|
248 |
+
def realistic_split(df, smile_col_index, frac_train, split_for_exact_frac=True, cluster_method = "Auto"):
|
249 |
+
return split_dataframe(df.copy(), smile_col_index, frac_train, split_for_exact_frac, cluster_method=cluster_method)
|
250 |
+
|
251 |
+
def split_df_into_train_and_test_sets(df):
|
252 |
+
df['group'] = df['group'].str.replace(' ', '_')
|
253 |
+
df['group'] = df['group'].str.lower()
|
254 |
+
train = df[df['group'] == 'training']
|
255 |
+
test = df[df['group'] == 'testing']
|
256 |
+
return train, test
|
257 |
+
|
258 |
+
smiles_index = 0 # Because smiles is in the first column
|
259 |
+
realistic = realistic_split(newAA.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto")
|
260 |
+
realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
|
261 |
+
|
262 |
+
#8. Test and train datasets have been made
|
263 |
+
|
264 |
+
selected_columns = realistic_train[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
|
265 |
+
selected_columns.to_csv("AggregatorAdvisor_train.csv", index=False)
|
266 |
+
selected_columns = realistic_test[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']]
|
267 |
+
selected_columns.to_csv("AggregatorAdvisor_test.csv", index=False)
|