File size: 3,064 Bytes
331f4c7
2e8cf3d
331f4c7
 
 
 
2e8cf3d
331f4c7
57fa245
2e8cf3d
 
 
 
325e07d
2e8cf3d
331f4c7
 
 
2e8cf3d
 
 
 
 
 
 
 
1742452
2e8cf3d
 
 
 
331f4c7
 
2e8cf3d
 
 
 
331f4c7
 
 
2e8cf3d
331f4c7
776d277
2e8cf3d
 
331f4c7
 
 
2e8cf3d
 
 
331f4c7
 
2e8cf3d
331f4c7
 
 
 
 
2e8cf3d
331f4c7
2e8cf3d
 
 
 
 
 
 
 
331f4c7
2e8cf3d
331f4c7
2e8cf3d
 
 
331f4c7
2e8cf3d
331f4c7
2e8cf3d
331f4c7
2e8cf3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import csv

import datasets
from datasets.tasks import TextClassification


logger = datasets.logging.get_logger(__name__)


_CITATION = """Citation"""
_DESCRIPTION = """Description"""

_DOWNLOAD_URLS = {
    "train": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/Tc_train.csv",
    "test": "https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification/raw/main/Tc_test.csv",
}


class DatasetNameConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(DatasetNameConfig, self).__init__(**kwargs)


class DatasetName(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        DatasetNameConfig(
            name="utc",
            version=datasets.Version("1.1.1"),
            description=_DESCRIPTION,
        ),
    ]

    def _info(self):
        text_column = "text"
        label_column = "label"
        # TODO PROVIDE THE LABELS HERE
        label_names = ["drop_withdraw", "centralauthentication_email","supervisor_seminar_proposal_defense", "registration"]
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {text_column: datasets.Value("string"), label_column: datasets.features.ClassLabel(names=label_names)}
            ),
            homepage="https://huggingface.co/datasets/mahdiyehebrahimi/University_Ticket_Classification",
            citation=_CITATION,
            task_templates=[TextClassification(text_column=text_column, label_column=label_column)],
        )

    def _split_generators(self, dl_manager):
        """
        Return SplitGenerators.
        """
        train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
        test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
        ]

    # TODO
    def _generate_examples(self, filepath):
        """
        Per each file_path read the csv file and iterate it.
        For each row yield a tuple of (id, {"text": ..., "label": ..., ...})
        Each call to this method yields an output like below:
        ```
        (123, {"text": "I liked it", "label": "positive"})
        ```
        """
        label2id = self.info.features[self.info.task_templates[0].label_column].str2int
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)

            # Uncomment below line to skip the first row if your csv file has a header row
            next(csv_reader, None)

            for id_, row in enumerate(csv_reader):
                text, label  = row
                label = label2id(label)
                # Optional preprocessing here
                yield id_, {"text": text, "label": label}