The Dataset Viewer has been disabled on this dataset.
MS MARCO PISA Index
Description
This is an index of the MS MARCO passage (v1) dataset with PISA. It can be used for passage retrieval using lexical methods.
Usage
>>> from pyterrier_pisa import PisaIndex
>>> index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
>>> bm25 = index.bm25()
>>> bm25.search('terrier breeds')
qid query docno score rank
0 1 terrier breeds 1406578 22.686367 0
1 1 terrier breeds 5785957 22.611134 1
2 1 terrier breeds 7455374 22.592781 2
3 1 terrier breeds 3984886 22.242958 3
4 1 terrier breeds 3984893 22.009525 4
...
Benchmarks
TREC DL 2019
Code
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_pisa import PisaIndex
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged')
pt.Experiment(
[index.bm25(), index.qld(), index.dph(), index.pl2()],
dataset.get_topics(),
dataset.get_qrels(),
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
['BM25', 'QLD', 'DPH', 'PL2'],
round=4,
)
name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |
---|---|---|---|---|---|---|
0 | BM25 | 0.4989 | 0.6023 | 0.6804 | 0.3031 | 0.7555 |
1 | QLD | 0.468 | 0.5984 | 0.6047 | 0.3037 | 0.7601 |
2 | DPH | 0.4975 | 0.5907 | 0.6674 | 0.3009 | 0.7436 |
3 | PL2 | 0.4503 | 0.5681 | 0.6495 | 0.2679 | 0.7304 |
TREC DL 2020
Code
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_pisa import PisaIndex
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2020/judged')
pt.Experiment(
[index.bm25(), index.qld(), index.dph(), index.pl2()],
dataset.get_topics(),
dataset.get_qrels(),
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
['BM25', 'QLD', 'DPH', 'PL2'],
round=4,
)
name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |
---|---|---|---|---|---|---|
0 | BM25 | 0.4793 | 0.5963 | 0.6529 | 0.2974 | 0.8048 |
1 | QLD | 0.4511 | 0.587 | 0.5812 | 0.2879 | 0.8125 |
2 | DPH | 0.4586 | 0.5704 | 0.6123 | 0.2779 | 0.798 |
3 | PL2 | 0.4552 | 0.5609 | 0.5788 | 0.2666 | 0.7772 |
MS MARCO Dev (small)
Code
from ir_measures import RR, R
import pyterrier as pt
from pyterrier_pisa import PisaIndex
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
dataset = pt.get_dataset('irds:msmarco-passage/dev/small')
pt.Experiment(
[index.bm25(), index.qld(), index.dph(), index.pl2()],
dataset.get_topics(),
dataset.get_qrels(),
[RR@10, R@1000],
['BM25', 'QLD', 'DPH', 'PL2'],
round=4,
)
name | RR@10 | R@1000 | |
---|---|---|---|
0 | BM25 | 0.185 | 0.8677 |
1 | QLD | 0.1683 | 0.8542 |
2 | DPH | 0.1782 | 0.8605 |
3 | PL2 | 0.1741 | 0.8607 |
Reproduction
>>> import pyterrier_pisa
>>> import pyterrier as pt
>>> idx = pyterrier_pisa.PisaIndex('msmarco-passage.pisa')
>>> idx.indexer().index(pt.get_dataset('irds:msmarco-passage').get_corpus_iter())
Metadata
{
"type": "sparse_index",
"format": "pisa",
"package_hint": "pyterrier-pisa",
"stemmer": "porter2"
}
- Downloads last month
- 2