Doc2Query monoT5 Relevance Scores for msmarco-passage
This dataset provides the pre-computed query relevance scores for the msmarco-passage
dataset,
for use with Doc2Query--.
The generated queries come from macavaney/d2q-msmarco-passage
and
were scored with castorini/monot5-base-msmarco
.
Getting started
This artefact is meant to be used with the pyterrier_doc2query
pacakge. It can
be installed as:
pip install git+https://github.com/terrierteam/pyterrier_doc2query
Depending on what you are using this aretefact for, you may also need the following additional packages:
pip install git+https://github.com/terrierteam/pyterrier_pisa # for indexing / retrieval
pip install git+https://github.com/terrierteam/pyterrier_t5 # for reproducing this aretefact
Using this artefact
The main use case is to use this aretefact in a Doc2Query−− indexing pipeline:
import pyterrier as pt ; pt.init()
from pyterrier_pisa import PisaIndex
from pyterrier_doc2query import QueryScoreStore, QueryFilter
store = QueryScoreStore.from_repo('https://huggingface.co/datasets/macavaney/d2q-msmarco-passage-scores-monot5')
index = PisaIndex('path/to/index')
pipeline = store.query_scorer(limit_k=40) >> QueryFilter(t=store.percentile(70)) >> index
dataset = pt.get_dataset('irds:msmarco-passage')
pipeline.index(dataset.get_corpus_iter())
You can also use the store directly as a dataset to look up or iterate over the data:
store.lookup('100')
# {'querygen': ..., 'querygen_store': ...}
for record in store:
pass
Reproducing this aretefact
This aretefact can be reproduced using the following pipeline:
import pyterrier as pt ; pt.init()
from pyterrier_t5 import MonoT5ReRanker
from pyterrier_doc2query import Doc2QueryStore, QueryScoreStore, QueryScorer
doc2query_generator = Doc2QueryStore.from_repo('https://huggingface.co/datasets/macavaney/d2q-msmarco-passage').generator()
store = QueryScoreStore('path/to/store')
pipeline = doc2query_generator >> QueryScorer(MonoT5ReRanker()) >> store
dataset = pt.get_dataset('irds:msmarco-passage')
pipeline.index(dataset.get_corpus_iter())
Note that this process will take quite some time; it computes the relevance score for 80 generated queries for every document in the dataset.
- Downloads last month
- 50