code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
from django.contrib import admin from .models import SearchResult # Register your models here. class SearchResultAdmin(admin.ModelAdmin): fields = ["query", "heading", "url", "text"] admin.site.register(SearchResult, SearchResultAdmin)
[ "django.contrib.admin.site.register" ]
[((189, 241), 'django.contrib.admin.site.register', 'admin.site.register', (['SearchResult', 'SearchResultAdmin'], {}), '(SearchResult, SearchResultAdmin)\n', (208, 241), False, 'from django.contrib import admin\n')]
import asyncio import os import tempfile from contextlib import ExitStack from typing import Text, Optional, List, Union, Dict from rasa.importers.importer import TrainingDataImporter from rasa import model from rasa.model import FingerprintComparisonResult from rasa.core.domain import Domain from rasa.utils.common import TempDirectoryPath from rasa.cli.utils import ( print_success, print_warning, print_error, bcolors, print_color, ) from rasa.constants import DEFAULT_MODELS_PATH, DEFAULT_CORE_SUBDIRECTORY_NAME def train( domain: Text, config: Text, training_files: Union[Text, List[Text]], output: Text = DEFAULT_MODELS_PATH, force_training: bool = False, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, additional_arguments: Optional[Dict] = None, loop: Optional[asyncio.AbstractEventLoop] = None, ) -> Optional[Text]: if loop is None: try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete( train_async( domain=domain, config=config, training_files=training_files, output_path=output, force_training=force_training, fixed_model_name=fixed_model_name, persist_nlu_training_data=persist_nlu_training_data, additional_arguments=additional_arguments, ) ) async def train_async( domain: Union[Domain, Text], config: Dict[Text, Text], training_files: Optional[Union[Text, List[Text]]], output_path: Text = DEFAULT_MODELS_PATH, force_training: bool = False, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: """Trains a Rasa model (Core and NLU). Args: domain: Path to the domain file. config: Dict of paths to the config for Core and NLU. Keys are language codes training_files: Paths to the training data for Core and NLU. output_path: Output path. force_training: If `True` retrain model even if data has not changed. fixed_model_name: Name of model to be stored. persist_nlu_training_data: `True` if the NLU training data should be persisted with the model. additional_arguments: Additional training parameters. Returns: Path of the trained model archive. """ # file_importer = TrainingDataImporter.load_from_config( # config, domain, training_files # ) with ExitStack() as stack: train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp())) # bf mod from rasa_addons.importers import BotfrontFileImporter file_importer = BotfrontFileImporter(config, domain, training_files) # domain = await file_importer.get_domain() # if domain.is_empty(): # return await handle_domain_if_not_exists( # file_importer, output_path, fixed_model_name # ) # /bf mod return await _train_async_internal( file_importer, train_path, output_path, force_training, fixed_model_name, persist_nlu_training_data, additional_arguments, ) async def handle_domain_if_not_exists( file_importer: TrainingDataImporter, output_path, fixed_model_name ): nlu_model_only = await _train_nlu_with_validated_data( file_importer, output=output_path, fixed_model_name=fixed_model_name ) print_warning( "Core training was skipped because no valid domain file was found. Only an nlu-model was created." "Please specify a valid domain using '--domain' argument or check if the provided domain file exists." ) return nlu_model_only async def _train_async_internal( file_importer: TrainingDataImporter, train_path: Text, output_path: Text, force_training: bool, fixed_model_name: Optional[Text], persist_nlu_training_data: bool, additional_arguments: Optional[Dict], ) -> Optional[Text]: """Trains a Rasa model (Core and NLU). Use only from `train_async`. Args: file_importer: `TrainingDataImporter` which supplies the training data. train_path: Directory in which to train the model. output_path: Output path. force_training: If `True` retrain model even if data has not changed. persist_nlu_training_data: `True` if the NLU training data should be persisted with the model. fixed_model_name: Name of model to be stored. additional_arguments: Additional training parameters. Returns: Path of the trained model archive. """ stories, nlu_data = await asyncio.gather( file_importer.get_stories(), file_importer.get_nlu_data() ) # if stories.is_empty() and nlu_data.is_empty(): # print_error( # "No training data given. Please provide stories and NLU data in " # "order to train a Rasa model using the '--data' argument." # ) # return # if nlu_data.is_empty(): # print_warning("No NLU data present. Just a Rasa Core model will be trained.") # return await _train_core_with_validated_data( # file_importer, # output=output_path, # fixed_model_name=fixed_model_name, # additional_arguments=additional_arguments, # ) new_fingerprint = await model.model_fingerprint(file_importer) old_model = model.get_latest_model(output_path) fingerprint_comparison = FingerprintComparisonResult(force_training=force_training) if not force_training: fingerprint_comparison = model.should_retrain( new_fingerprint, old_model, train_path ) # bf mod > if fingerprint_comparison.nlu == True: # replace True with list of all langs fingerprint_comparison.nlu = list(new_fingerprint.get("nlu-config", {}).keys()) domain = await file_importer.get_domain() core_untrainable = domain.is_empty() or stories.is_empty() nlu_untrainable = [l for l, d in nlu_data.items() if d.is_empty()] fingerprint_comparison.core = fingerprint_comparison.core and not core_untrainable fingerprint_comparison.nlu = [l for l in fingerprint_comparison.nlu if l not in nlu_untrainable] if core_untrainable: print_color("Skipping Core training since domain or stories are empty.", color=bcolors.OKBLUE) for lang in nlu_untrainable: print_color("No NLU data found for language <{}>, skipping training...".format(lang), color=bcolors.OKBLUE) # </ bf mod if fingerprint_comparison.is_training_required(): await _do_training( file_importer, output_path=output_path, train_path=train_path, fingerprint_comparison_result=fingerprint_comparison, fixed_model_name=fixed_model_name, persist_nlu_training_data=persist_nlu_training_data, additional_arguments=additional_arguments, ) return model.package_model( fingerprint=new_fingerprint, output_directory=output_path, train_path=train_path, fixed_model_name=fixed_model_name, ) print_success( "Nothing changed. You can use the old model stored at '{}'." "".format(os.path.abspath(old_model)) ) return old_model async def _do_training( file_importer: TrainingDataImporter, output_path: Text, train_path: Text, fingerprint_comparison_result: Optional[FingerprintComparisonResult] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, additional_arguments: Optional[Dict] = None, ): if not fingerprint_comparison_result: fingerprint_comparison_result = FingerprintComparisonResult() if fingerprint_comparison_result.should_retrain_core(): await _train_core_with_validated_data( file_importer, output=output_path, train_path=train_path, fixed_model_name=fixed_model_name, additional_arguments=additional_arguments, ) elif fingerprint_comparison_result.should_retrain_nlg(): print_color( "Core stories/configuration did not change. " "Only the templates section has been changed. A new model with " "the updated templates will be created.", color=bcolors.OKBLUE, ) await model.update_model_with_new_domain(file_importer, train_path) else: print_color( "Core stories/configuration did not change. No need to retrain Core model.", color=bcolors.OKBLUE, ) if fingerprint_comparison_result.should_retrain_nlu(): await _train_nlu_with_validated_data( file_importer, output=output_path, train_path=train_path, fixed_model_name=fixed_model_name, retrain_nlu=fingerprint_comparison_result.nlu, persist_nlu_training_data=persist_nlu_training_data, ) else: print_color( "NLU data/configuration did not change. No need to retrain NLU model.", color=bcolors.OKBLUE, ) def train_core( domain: Union[Domain, Text], config: Text, stories: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: loop = asyncio.get_event_loop() return loop.run_until_complete( train_core_async( domain=domain, config=config, stories=stories, output=output, train_path=train_path, fixed_model_name=fixed_model_name, additional_arguments=additional_arguments, ) ) async def train_core_async( domain: Union[Domain, Text], config: Text, stories: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: """Trains a Core model. Args: domain: Path to the domain file. config: Path to the config file for Core. stories: Path to the Core training data. output: Output path. train_path: If `None` the model will be trained in a temporary directory, otherwise in the provided directory. fixed_model_name: Name of model to be stored. uncompress: If `True` the model will not be compressed. additional_arguments: Additional training parameters. Returns: If `train_path` is given it returns the path to the model archive, otherwise the path to the directory with the trained model files. """ file_importer = TrainingDataImporter.load_core_importer_from_config( config, domain, [stories] ) domain = await file_importer.get_domain() if domain.is_empty(): print_error( "Core training was skipped because no valid domain file was found. " "Please specify a valid domain using '--domain' argument or check if the provided domain file exists." ) return None if not await file_importer.get_stories(): print_error( "No stories given. Please provide stories in order to " "train a Rasa Core model using the '--stories' argument." ) return return await _train_core_with_validated_data( file_importer, output=output, train_path=train_path, fixed_model_name=fixed_model_name, additional_arguments=additional_arguments, ) async def _train_core_with_validated_data( file_importer: TrainingDataImporter, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: """Train Core with validated training and config data.""" import rasa.core.train with ExitStack() as stack: if train_path: # If the train path was provided, do nothing on exit. _train_path = train_path else: # Otherwise, create a temp train path and clean it up on exit. _train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp())) # normal (not compare) training print_color("Training Core model...", color=bcolors.OKBLUE) domain, config = await asyncio.gather( file_importer.get_domain(), file_importer.get_config() ) await rasa.core.train( domain_file=domain, training_resource=file_importer, output_path=os.path.join(_train_path, DEFAULT_CORE_SUBDIRECTORY_NAME), policy_config=config, additional_arguments=additional_arguments, ) print_color("Core model training completed.", color=bcolors.OKBLUE) if train_path is None: # Only Core was trained. new_fingerprint = await model.model_fingerprint(file_importer) return model.package_model( fingerprint=new_fingerprint, output_directory=output, train_path=_train_path, fixed_model_name=fixed_model_name, model_prefix="core-", ) return _train_path def train_nlu( config: Text, nlu_data: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, ) -> Optional[Text]: """Trains an NLU model. Args: config: Path to the config file for NLU. nlu_data: Path to the NLU training data. output: Output path. train_path: If `None` the model will be trained in a temporary directory, otherwise in the provided directory. fixed_model_name: Name of the model to be stored. persist_nlu_training_data: `True` if the NLU training data should be persisted with the model. Returns: If `train_path` is given it returns the path to the model archive, otherwise the path to the directory with the trained model files. """ loop = asyncio.get_event_loop() return loop.run_until_complete( _train_nlu_async( config, nlu_data, output, train_path, fixed_model_name, persist_nlu_training_data, ) ) async def _train_nlu_async( config: Text, nlu_data: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, ): if not nlu_data: print_error( "No NLU data given. Please provide NLU data in order to train " "a Rasa NLU model using the '--nlu' argument." ) return # training NLU only hence the training files still have to be selected file_importer = TrainingDataImporter.load_nlu_importer_from_config( config, training_data_paths=[nlu_data] ) training_datas = await file_importer.get_nlu_data() if training_datas.is_empty(): print_error( f"Path '{nlu_data}' doesn't contain valid NLU data in it. " "Please verify the data format. " "The NLU model training will be skipped now." ) return return await _train_nlu_with_validated_data( file_importer, output=output, train_path=train_path, fixed_model_name=fixed_model_name, persist_nlu_training_data=persist_nlu_training_data, ) async def _train_nlu_with_validated_data( file_importer: TrainingDataImporter, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, retrain_nlu: Union[bool, List[Text]] = True ) -> Optional[Text]: """Train NLU with validated training and config data.""" import rasa.nlu.train with ExitStack() as stack: models = {} from rasa.nlu import config as cfg_loader if train_path: # If the train path was provided, do nothing on exit. _train_path = train_path else: # Otherwise, create a temp train path and clean it up on exit. _train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp())) # bf mod config = await file_importer.get_nlu_config(retrain_nlu) for lang in config: if config[lang]: print_color("Start training {} NLU model ...".format(lang), color=bcolors.OKBLUE) _, models[lang], _ = await rasa.nlu.train( config[lang], file_importer, _train_path, fixed_model_name="nlu-{}".format(lang), persist_nlu_training_data=persist_nlu_training_data, ) else: print_color("NLU data for language <{}> didn't change, skipping training...".format(lang), color=bcolors.OKBLUE) # /bf mod print_color("NLU model training completed.", color=bcolors.OKBLUE) if train_path is None: # Only NLU was trained new_fingerprint = await model.model_fingerprint(file_importer) return model.package_model( fingerprint=new_fingerprint, output_directory=output, train_path=_train_path, fixed_model_name=fixed_model_name, model_prefix="nlu-", ) return _train_path
[ "rasa.model.FingerprintComparisonResult", "rasa_addons.importers.BotfrontFileImporter", "rasa.model.update_model_with_new_domain", "rasa.model.should_retrain", "asyncio.new_event_loop", "rasa.cli.utils.print_color", "rasa.cli.utils.print_warning", "rasa.importers.importer.TrainingDataImporter.load_nlu_importer_from_config", "contextlib.ExitStack", "rasa.model.package_model", "asyncio.get_event_loop", "tempfile.mkdtemp", "rasa.cli.utils.print_error", "rasa.importers.importer.TrainingDataImporter.load_core_importer_from_config", "rasa.model.model_fingerprint", "os.path.join", "rasa.model.get_latest_model", "os.path.abspath", "asyncio.set_event_loop" ]
[((3729, 3952), 'rasa.cli.utils.print_warning', 'print_warning', (['"""Core training was skipped because no valid domain file was found. Only an nlu-model was created.Please specify a valid domain using \'--domain\' argument or check if the provided domain file exists."""'], {}), '(\n "Core training was skipped because no valid domain file was found. Only an nlu-model was created.Please specify a valid domain using \'--domain\' argument or check if the provided domain file exists."\n )\n', (3742, 3952), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((5750, 5785), 'rasa.model.get_latest_model', 'model.get_latest_model', (['output_path'], {}), '(output_path)\n', (5772, 5785), False, 'from rasa import model\n'), ((5815, 5873), 'rasa.model.FingerprintComparisonResult', 'FingerprintComparisonResult', ([], {'force_training': 'force_training'}), '(force_training=force_training)\n', (5842, 5873), False, 'from rasa.model import FingerprintComparisonResult\n'), ((9790, 9814), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (9812, 9814), False, 'import asyncio\n'), ((11124, 11202), 'rasa.importers.importer.TrainingDataImporter.load_core_importer_from_config', 'TrainingDataImporter.load_core_importer_from_config', (['config', 'domain', '[stories]'], {}), '(config, domain, [stories])\n', (11175, 11202), False, 'from rasa.importers.importer import TrainingDataImporter\n'), ((14616, 14640), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (14638, 14640), False, 'import asyncio\n'), ((15390, 15484), 'rasa.importers.importer.TrainingDataImporter.load_nlu_importer_from_config', 'TrainingDataImporter.load_nlu_importer_from_config', (['config'], {'training_data_paths': '[nlu_data]'}), '(config,\n training_data_paths=[nlu_data])\n', (15440, 15484), False, 'from rasa.importers.importer import TrainingDataImporter\n'), ((2709, 2720), 'contextlib.ExitStack', 'ExitStack', ([], {}), '()\n', (2718, 2720), False, 'from contextlib import ExitStack\n'), ((2916, 2968), 'rasa_addons.importers.BotfrontFileImporter', 'BotfrontFileImporter', (['config', 'domain', 'training_files'], {}), '(config, domain, training_files)\n', (2936, 2968), False, 'from rasa_addons.importers import BotfrontFileImporter\n'), ((5695, 5733), 'rasa.model.model_fingerprint', 'model.model_fingerprint', (['file_importer'], {}), '(file_importer)\n', (5718, 5733), False, 'from rasa import model\n'), ((5934, 5994), 'rasa.model.should_retrain', 'model.should_retrain', (['new_fingerprint', 'old_model', 'train_path'], {}), '(new_fingerprint, old_model, train_path)\n', (5954, 5994), False, 'from rasa import model\n'), ((6604, 6702), 'rasa.cli.utils.print_color', 'print_color', (['"""Skipping Core training since domain or stories are empty."""'], {'color': 'bcolors.OKBLUE'}), "('Skipping Core training since domain or stories are empty.',\n color=bcolors.OKBLUE)\n", (6615, 6702), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((7305, 7446), 'rasa.model.package_model', 'model.package_model', ([], {'fingerprint': 'new_fingerprint', 'output_directory': 'output_path', 'train_path': 'train_path', 'fixed_model_name': 'fixed_model_name'}), '(fingerprint=new_fingerprint, output_directory=\n output_path, train_path=train_path, fixed_model_name=fixed_model_name)\n', (7324, 7446), False, 'from rasa import model\n'), ((8080, 8109), 'rasa.model.FingerprintComparisonResult', 'FingerprintComparisonResult', ([], {}), '()\n', (8107, 8109), False, 'from rasa.model import FingerprintComparisonResult\n'), ((9378, 9492), 'rasa.cli.utils.print_color', 'print_color', (['"""NLU data/configuration did not change. No need to retrain NLU model."""'], {'color': 'bcolors.OKBLUE'}), "(\n 'NLU data/configuration did not change. No need to retrain NLU model.',\n color=bcolors.OKBLUE)\n", (9389, 9492), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((11297, 11488), 'rasa.cli.utils.print_error', 'print_error', (['"""Core training was skipped because no valid domain file was found. Please specify a valid domain using \'--domain\' argument or check if the provided domain file exists."""'], {}), '(\n "Core training was skipped because no valid domain file was found. Please specify a valid domain using \'--domain\' argument or check if the provided domain file exists."\n )\n', (11308, 11488), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((11591, 11724), 'rasa.cli.utils.print_error', 'print_error', (['"""No stories given. Please provide stories in order to train a Rasa Core model using the \'--stories\' argument."""'], {}), '(\n "No stories given. Please provide stories in order to train a Rasa Core model using the \'--stories\' argument."\n )\n', (11602, 11724), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((12353, 12364), 'contextlib.ExitStack', 'ExitStack', ([], {}), '()\n', (12362, 12364), False, 'from contextlib import ExitStack\n'), ((12724, 12783), 'rasa.cli.utils.print_color', 'print_color', (['"""Training Core model..."""'], {'color': 'bcolors.OKBLUE'}), "('Training Core model...', color=bcolors.OKBLUE)\n", (12735, 12783), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((13206, 13273), 'rasa.cli.utils.print_color', 'print_color', (['"""Core model training completed."""'], {'color': 'bcolors.OKBLUE'}), "('Core model training completed.', color=bcolors.OKBLUE)\n", (13217, 13273), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((15121, 15251), 'rasa.cli.utils.print_error', 'print_error', (['"""No NLU data given. Please provide NLU data in order to train a Rasa NLU model using the \'--nlu\' argument."""'], {}), '(\n "No NLU data given. Please provide NLU data in order to train a Rasa NLU model using the \'--nlu\' argument."\n )\n', (15132, 15251), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((15594, 15750), 'rasa.cli.utils.print_error', 'print_error', (['f"""Path \'{nlu_data}\' doesn\'t contain valid NLU data in it. Please verify the data format. The NLU model training will be skipped now."""'], {}), '(\n f"Path \'{nlu_data}\' doesn\'t contain valid NLU data in it. Please verify the data format. The NLU model training will be skipped now."\n )\n', (15605, 15750), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((16444, 16455), 'contextlib.ExitStack', 'ExitStack', ([], {}), '()\n', (16453, 16455), False, 'from contextlib import ExitStack\n'), ((17559, 17625), 'rasa.cli.utils.print_color', 'print_color', (['"""NLU model training completed."""'], {'color': 'bcolors.OKBLUE'}), "('NLU model training completed.', color=bcolors.OKBLUE)\n", (17570, 17625), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((974, 998), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (996, 998), False, 'import asyncio\n'), ((7608, 7634), 'os.path.abspath', 'os.path.abspath', (['old_model'], {}), '(old_model)\n', (7623, 7634), False, 'import os\n'), ((8493, 8683), 'rasa.cli.utils.print_color', 'print_color', (['"""Core stories/configuration did not change. Only the templates section has been changed. A new model with the updated templates will be created."""'], {'color': 'bcolors.OKBLUE'}), "(\n 'Core stories/configuration did not change. Only the templates section has been changed. A new model with the updated templates will be created.'\n , color=bcolors.OKBLUE)\n", (8504, 8683), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((8833, 8953), 'rasa.cli.utils.print_color', 'print_color', (['"""Core stories/configuration did not change. No need to retrain Core model."""'], {'color': 'bcolors.OKBLUE'}), "(\n 'Core stories/configuration did not change. No need to retrain Core model.'\n , color=bcolors.OKBLUE)\n", (8844, 8953), False, 'from rasa.cli.utils import print_success, print_warning, print_error, bcolors, print_color\n'), ((13437, 13600), 'rasa.model.package_model', 'model.package_model', ([], {'fingerprint': 'new_fingerprint', 'output_directory': 'output', 'train_path': '_train_path', 'fixed_model_name': 'fixed_model_name', 'model_prefix': '"""core-"""'}), "(fingerprint=new_fingerprint, output_directory=output,\n train_path=_train_path, fixed_model_name=fixed_model_name, model_prefix\n ='core-')\n", (13456, 13600), False, 'from rasa import model\n'), ((17788, 17950), 'rasa.model.package_model', 'model.package_model', ([], {'fingerprint': 'new_fingerprint', 'output_directory': 'output', 'train_path': '_train_path', 'fixed_model_name': 'fixed_model_name', 'model_prefix': '"""nlu-"""'}), "(fingerprint=new_fingerprint, output_directory=output,\n train_path=_train_path, fixed_model_name=fixed_model_name, model_prefix\n ='nlu-')\n", (17807, 17950), False, 'from rasa import model\n'), ((1047, 1071), 'asyncio.new_event_loop', 'asyncio.new_event_loop', ([], {}), '()\n', (1069, 1071), False, 'import asyncio\n'), ((1084, 1112), 'asyncio.set_event_loop', 'asyncio.set_event_loop', (['loop'], {}), '(loop)\n', (1106, 1112), False, 'import asyncio\n'), ((2790, 2808), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (2806, 2808), False, 'import tempfile\n'), ((8753, 8814), 'rasa.model.update_model_with_new_domain', 'model.update_model_with_new_domain', (['file_importer', 'train_path'], {}), '(file_importer, train_path)\n', (8787, 8814), False, 'from rasa import model\n'), ((13379, 13417), 'rasa.model.model_fingerprint', 'model.model_fingerprint', (['file_importer'], {}), '(file_importer)\n', (13402, 13417), False, 'from rasa import model\n'), ((17729, 17767), 'rasa.model.model_fingerprint', 'model.model_fingerprint', (['file_importer'], {}), '(file_importer)\n', (17752, 17767), False, 'from rasa import model\n'), ((12654, 12672), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (12670, 12672), False, 'import tempfile\n'), ((13040, 13097), 'os.path.join', 'os.path.join', (['_train_path', 'DEFAULT_CORE_SUBDIRECTORY_NAME'], {}), '(_train_path, DEFAULT_CORE_SUBDIRECTORY_NAME)\n', (13052, 13097), False, 'import os\n'), ((16816, 16834), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (16832, 16834), False, 'import tempfile\n')]
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: ''' PNASNet in PyTorch. Paper: Progressive Neural Architecture Search ''' from easyai.base_name.block_name import NormalizationType, ActivationType from easyai.base_name.backbone_name import BackboneName from easyai.model.backbone.utility.base_backbone import * from easyai.model.base_block.utility.utility_block import ConvBNActivationBlock from easyai.model.base_block.cls.pnasnet_block import CellA, CellB __all__ = ['pnasnet_A', 'pnasnet_B'] class PNASNet(BaseBackbone): def __init__(self, data_channel=3, num_cells=6, num_planes=44, block=CellA, bnName=NormalizationType.BatchNormalize2d, activationName=ActivationType.ReLU): super().__init__() self.set_name(BackboneName.PNASNetA) self.data_channel = data_channel self.num_cells = num_cells self.block = block self.activation_name = activationName self.bn_name = bnName self.first_output = num_planes self.in_planes = self.first_output self.create_block_list() def create_block_list(self): self.block_out_channels = [] self.index = 0 layer1 = ConvBNActivationBlock(in_channels=self.data_channel, out_channels=self.first_output, kernel_size=3, stride=1, padding=1, bias=False, bnName=self.bn_name, activationName=self.activation_name) self.add_block_list(layer1.get_name(), layer1, self.first_output) self.make_layer(self.first_output, self.num_cells) self.downsample(self.first_output * 2) self.make_layer(self.first_output * 2, self.num_cells) self.downsample(self.first_output * 4) self.make_layer(self.first_output * 4, self.num_cells) def make_layer(self, planes, num_cells): for _ in range(num_cells): temp_block = self.block(self.in_planes, planes, stride=1, bn_name=self.bn_name, activation_name=self.activation_name) self.add_block_list(temp_block.get_name(), temp_block, planes) self.in_planes = planes def downsample(self, planes): down_block = self.block(self.in_planes, planes, stride=2, bn_name=self.bn_name, activation_name=self.activation_name) self.add_block_list(down_block.get_name(), down_block, planes) self.in_planes = planes def forward(self, x): output_list = [] for block in self._modules.values(): x = block(x) output_list.append(x) return output_list def pnasnet_A(data_channel): model = PNASNet(data_channel=data_channel, num_cells=6, num_planes=44, block=CellA) model.set_name(BackboneName.PNASNetA) return model def pnasnet_B(data_channel): model = PNASNet(data_channel=data_channel, num_cells=6, num_planes=32, block=CellB) model.set_name(BackboneName.PNASNetB) return model
[ "easyai.model.base_block.utility.utility_block.ConvBNActivationBlock" ]
[((1225, 1425), 'easyai.model.base_block.utility.utility_block.ConvBNActivationBlock', 'ConvBNActivationBlock', ([], {'in_channels': 'self.data_channel', 'out_channels': 'self.first_output', 'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias': '(False)', 'bnName': 'self.bn_name', 'activationName': 'self.activation_name'}), '(in_channels=self.data_channel, out_channels=self.\n first_output, kernel_size=3, stride=1, padding=1, bias=False, bnName=\n self.bn_name, activationName=self.activation_name)\n', (1246, 1425), False, 'from easyai.model.base_block.utility.utility_block import ConvBNActivationBlock\n')]
# -*- coding: utf-8 -*- # coding=utf-8 import json import os import math import logging import requests import time from map_download.cmd.BaseDownloader import DownloadEngine, BaseDownloaderThread, latlng2tile_terrain, BoundBox def get_access_token(token): resp = None request_count = 0 url = "https://api.cesium.com/v1/assets/1/endpoint" while True: if request_count > 4: break try: request_count += 1 param = {'access_token': token} resp = requests.get(url, params=param, timeout=2) if resp.status_code != 200: continue break except Exception as e: resp = None time.sleep(3) if resp is None: return None resp_json = resp.json() return resp_json.get('accessToken') class TerrainDownloaderThread(BaseDownloaderThread): URL = "https://assets.cesium.com/1/{z}/{x}/{y}.terrain?extensions=octvertexnormals-watermask&v=1.1.0" def __init__(self, root_dir, bbox, token, task_q, logger=None, write_db=False): super(TerrainDownloaderThread, self).__init__( root_dir, bbox, task_q, logger, write_db=write_db, db_file_name='Terrain.db') self.token = token self._init_metadata( format='terrain', bounds='%f,%f,%f,%f' % (self.bbox.min_lng, self.bbox.min_lat, self.bbox.max_lng, self.bbox.max_lat)) def get_url(self, x, y, z): return self.URL.format(x=x, y=y, z=z) def _download(self, x, y, z): file_path = '%s/%s/%i/%i/%i.%s' % (self.root_dir, 'Terrain', z, x, y, 'terrain') if os.path.exists(file_path): self._data2DB(x, y, z, file_path) return 0 os.makedirs(os.path.dirname(file_path), exist_ok=True) resp = None requre_count = 0 _url = '' access_token = get_access_token(self.token) if access_token is None: return -1 param = {'extensions': 'octvertexnormals-watermask', 'v': '1.1.0', 'access_token': access_token} while True: if requre_count > 4: break try: _url = self.get_url(x, y, z) resp = requests.get(_url, params=param, stream=True, timeout=2) break except Exception as e: resp = None time.sleep(3) requre_count += 1 if resp is None: return -1 if resp.status_code != 200: return -1 try: with open(file_path, 'wb') as f: for chunk in resp.iter_content(chunk_size=1024): if chunk: f.write(chunk) except Exception as e: return -1 self._data2DB(x, y, z, file_path) return 1 class TerrainDownloadEngine(DownloadEngine): root_dir = '' def __init__(self, root_dir, bbox, token, thread_num, logger=None, write_db=False): super(TerrainDownloadEngine, self).__init__(bbox, thread_num, logger, write_db=write_db) self.root_dir = root_dir self.token = token def bbox2xyz(self, bbox, z): min_x, min_y = latlng2tile_terrain(bbox.min_lat, bbox.min_lng, z) max_x, max_y = latlng2tile_terrain(bbox.max_lat, bbox.max_lng, z) return math.floor(min_x), math.floor(min_y), math.ceil(max_x) + 1, math.ceil(max_y) + 1 def generate_metadata(self): try: metadatas = { "attribution": "© Analytical Graphics Inc., © CGIAR-CSI, Produced using Copernicus data and " "information funded by the European Union - EU-DEM layers", "available": [ [ { "endX": 1, "endY": 0, "startX": 0, "startY": 0 } ], [ { "endX": 3, "endY": 1, "startX": 0, "startY": 0 } ], [ { "endX": 7, "endY": 3, "startX": 0, "startY": 0 } ], [ { "endX": 15, "endY": 7, "startX": 0, "startY": 0 } ], [ { "endX": 31, "endY": 15, "startX": 0, "startY": 0 } ], [ { "endX": 63, "endY": 31, "startX": 0, "startY": 0 } ], [ { "endX": 127, "endY": 63, "startX": 0, "startY": 0 } ], [ { "endX": 255, "endY": 127, "startX": 0, "startY": 0 } ], [ { "endX": 511, "endY": 255, "startX": 0, "startY": 0 } ], [ { "endX": 1023, "endY": 511, "startX": 0, "startY": 0 } ], [ { "endX": 2047, "endY": 1023, "startX": 0, "startY": 0 } ], [ { "endX": 4095, "endY": 2047, "startX": 0, "startY": 0 } ], [ { "endX": 8191, "endY": 4095, "startX": 0, "startY": 0 } ], [ { "endX": 16383, "endY": 8191, "startX": 0, "startY": 0 } ], [ { "endX": 32767, "endY": 16383, "startX": 0, "startY": 0 } ] ], "bounds": [-180, -90, 180, 90, ], "description": "STK World Terrain Premium Tileset, v1.3. 10m - 30m resolution CONUS, 30m resolution " "SRTM between 60N and 60S, 30m Europe. Minimum global coverage of 1000m.", "extensions": ["watermask", "vertexnormals", "octvertexnormals", ], "format": "quantized-mesh-1.0", "maxzoom": 13, "minzoom": 0, "name": "world", "projection": "EPSG:4326", "scheme": "tms", "tilejson": "2.1.0", "tiles": ["{z}/{x}/{y}.terrain?v={version}", ], "version": "1.31376.0" } _dir = os.path.join(self.root_dir, 'Terrain') os.makedirs(_dir, exist_ok=True) metadatas_path = os.path.join(_dir, 'layer.json') with open(metadatas_path, 'w') as f: json.dump(metadatas, f) except Exception as e: if self.logger is not None: self.logger.exception(e) def run(self): try: self.generate_metadata() count = 0 bboxs = self.cut_bbox() for bbox in bboxs: _count = self.get_task_count(bbox) count += _count self.division_done_signal.emit(count) for bbox in bboxs: while True: if not self.running: time.sleep(0.01) else: break task_q = self.get_task_queue(bbox) self.threads = [] for i in range(self.thread_num): thread = TerrainDownloaderThread(self.root_dir, self.bbox, self.token, task_q, self.logger, write_db=self.write_db) thread.sub_progressBar_updated_signal.connect(self.sub_update_progressBar) self.threads.append(thread) for thread in self.threads: thread.start() for thread in self.threads: thread.wait() for t in self.threads: t.stop() t.quit() self.threads = [] self.download_done_signal.emit() except Exception as e: if self.logger is not None: self.logger.error(e) if __name__ == '__main__': if 1: logger = logging.getLogger('down') try: root = r'/Users/cugxy/Documents/data/downloader' formatter = logging.Formatter('%(levelname)s-%(message)s') hdlr = logging.StreamHandler() log_file = os.path.join(root, 'down.log') file_hdlr = logging.FileHandler(log_file) file_hdlr.setFormatter(formatter) logger.addHandler(file_hdlr) logger.addHandler(hdlr) logger.setLevel(logging.INFO) min_lng = -180.0 max_lng = 180.0 min_lat = -90.0 max_lat = 90.0 start_zoom = 0 end_zoom = 5 bbox = BoundBox(max_lat, max_lng, min_lat, min_lng, start_zoom, end_zoom) d = TerrainDownloadEngine(root, bbox, 8, logger) d.start() time.sleep(10000) logger.error('main thread out') except Exception as e: logger.error(e) if 0: accessToken = get_access_token() pass
[ "logging.getLogger", "os.path.exists", "logging.StreamHandler", "math.ceil", "os.makedirs", "map_download.cmd.BaseDownloader.latlng2tile_terrain", "math.floor", "logging.Formatter", "map_download.cmd.BaseDownloader.BoundBox", "os.path.join", "requests.get", "time.sleep", "os.path.dirname", "logging.FileHandler", "json.dump" ]
[((1646, 1671), 'os.path.exists', 'os.path.exists', (['file_path'], {}), '(file_path)\n', (1660, 1671), False, 'import os\n'), ((3201, 3251), 'map_download.cmd.BaseDownloader.latlng2tile_terrain', 'latlng2tile_terrain', (['bbox.min_lat', 'bbox.min_lng', 'z'], {}), '(bbox.min_lat, bbox.min_lng, z)\n', (3220, 3251), False, 'from map_download.cmd.BaseDownloader import DownloadEngine, BaseDownloaderThread, latlng2tile_terrain, BoundBox\n'), ((3275, 3325), 'map_download.cmd.BaseDownloader.latlng2tile_terrain', 'latlng2tile_terrain', (['bbox.max_lat', 'bbox.max_lng', 'z'], {}), '(bbox.max_lat, bbox.max_lng, z)\n', (3294, 3325), False, 'from map_download.cmd.BaseDownloader import DownloadEngine, BaseDownloaderThread, latlng2tile_terrain, BoundBox\n'), ((10233, 10258), 'logging.getLogger', 'logging.getLogger', (['"""down"""'], {}), "('down')\n", (10250, 10258), False, 'import logging\n'), ((526, 568), 'requests.get', 'requests.get', (['url'], {'params': 'param', 'timeout': '(2)'}), '(url, params=param, timeout=2)\n', (538, 568), False, 'import requests\n'), ((1760, 1786), 'os.path.dirname', 'os.path.dirname', (['file_path'], {}), '(file_path)\n', (1775, 1786), False, 'import os\n'), ((3341, 3358), 'math.floor', 'math.floor', (['min_x'], {}), '(min_x)\n', (3351, 3358), False, 'import math\n'), ((3360, 3377), 'math.floor', 'math.floor', (['min_y'], {}), '(min_y)\n', (3370, 3377), False, 'import math\n'), ((8434, 8472), 'os.path.join', 'os.path.join', (['self.root_dir', '"""Terrain"""'], {}), "(self.root_dir, 'Terrain')\n", (8446, 8472), False, 'import os\n'), ((8485, 8517), 'os.makedirs', 'os.makedirs', (['_dir'], {'exist_ok': '(True)'}), '(_dir, exist_ok=True)\n', (8496, 8517), False, 'import os\n'), ((8547, 8579), 'os.path.join', 'os.path.join', (['_dir', '"""layer.json"""'], {}), "(_dir, 'layer.json')\n", (8559, 8579), False, 'import os\n'), ((10357, 10403), 'logging.Formatter', 'logging.Formatter', (['"""%(levelname)s-%(message)s"""'], {}), "('%(levelname)s-%(message)s')\n", (10374, 10403), False, 'import logging\n'), ((10423, 10446), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (10444, 10446), False, 'import logging\n'), ((10470, 10500), 'os.path.join', 'os.path.join', (['root', '"""down.log"""'], {}), "(root, 'down.log')\n", (10482, 10500), False, 'import os\n'), ((10525, 10554), 'logging.FileHandler', 'logging.FileHandler', (['log_file'], {}), '(log_file)\n', (10544, 10554), False, 'import logging\n'), ((10903, 10969), 'map_download.cmd.BaseDownloader.BoundBox', 'BoundBox', (['max_lat', 'max_lng', 'min_lat', 'min_lng', 'start_zoom', 'end_zoom'], {}), '(max_lat, max_lng, min_lat, min_lng, start_zoom, end_zoom)\n', (10911, 10969), False, 'from map_download.cmd.BaseDownloader import DownloadEngine, BaseDownloaderThread, latlng2tile_terrain, BoundBox\n'), ((11065, 11082), 'time.sleep', 'time.sleep', (['(10000)'], {}), '(10000)\n', (11075, 11082), False, 'import time\n'), ((719, 732), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (729, 732), False, 'import time\n'), ((2222, 2278), 'requests.get', 'requests.get', (['_url'], {'params': 'param', 'stream': '(True)', 'timeout': '(2)'}), '(_url, params=param, stream=True, timeout=2)\n', (2234, 2278), False, 'import requests\n'), ((3379, 3395), 'math.ceil', 'math.ceil', (['max_x'], {}), '(max_x)\n', (3388, 3395), False, 'import math\n'), ((3401, 3417), 'math.ceil', 'math.ceil', (['max_y'], {}), '(max_y)\n', (3410, 3417), False, 'import math\n'), ((8645, 8668), 'json.dump', 'json.dump', (['metadatas', 'f'], {}), '(metadatas, f)\n', (8654, 8668), False, 'import json\n'), ((2380, 2393), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (2390, 2393), False, 'import time\n'), ((9197, 9213), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (9207, 9213), False, 'import time\n')]
"""Forms for RTD donations""" import logging from django import forms from django.conf import settings from django.utils.translation import ugettext_lazy as _ from readthedocs.payments.forms import StripeModelForm, StripeResourceMixin from readthedocs.payments.utils import stripe from .models import Supporter log = logging.getLogger(__name__) class SupporterForm(StripeResourceMixin, StripeModelForm): """Donation support sign up form This extends the basic payment form, giving fields for credit card number, expiry, and CVV. The proper Knockout data bindings are established on :py:class:`StripeModelForm` """ class Meta: model = Supporter fields = ( 'last_4_digits', 'name', 'email', 'dollars', 'logo_url', 'site_url', 'public', ) labels = { 'public': _('Make this donation public'), } help_texts = { 'public': _('Your name and image will be displayed on the donation page'), 'email': _('Your email is used for Gravatar and so we can send you a receipt'), 'logo_url': _("URL of your company's logo, images should be 300x300 pixels or less"), 'dollars': _('Companies donating over $400 can specify a logo URL and site link'), } widgets = { 'dollars': forms.HiddenInput(attrs={ 'data-bind': 'value: dollars' }), 'logo_url': forms.TextInput(attrs={ 'data-bind': 'value: logo_url, enable: urls_enabled' }), 'site_url': forms.TextInput(attrs={ 'data-bind': 'value: site_url, enable: urls_enabled' }), 'last_4_digits': forms.TextInput(attrs={ 'data-bind': 'valueInit: card_digits, value: card_digits' }), } last_4_digits = forms.CharField(widget=forms.HiddenInput(), required=True) name = forms.CharField(required=True) email = forms.CharField(required=True) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super(SupporterForm, self).__init__(*args, **kwargs) def validate_stripe(self): """Call stripe for payment (not ideal here) and clean up logo < $200""" dollars = self.cleaned_data['dollars'] if dollars < 200: self.cleaned_data['logo_url'] = None self.cleaned_data['site_url'] = None stripe.Charge.create( amount=int(self.cleaned_data['dollars']) * 100, currency='usd', source=self.cleaned_data['stripe_token'], description='Read the Docs Sustained Engineering', receipt_email=self.cleaned_data['email'] ) def save(self, commit=True): supporter = super(SupporterForm, self).save(commit) if commit and self.user is not None and self.user.is_authenticated(): supporter.user = self.user supporter.save() return supporter class EthicalAdForm(StripeResourceMixin, StripeModelForm): """Payment form for ethical ads This extends the basic payment form, giving fields for credit card number, expiry, and CVV. The proper Knockout data bindings are established on :py:class:`StripeModelForm` """ class Meta: model = Supporter fields = ( 'last_4_digits', 'name', 'email', 'dollars', ) help_texts = { 'email': _('Your email is used so we can send you a receipt'), } widgets = { 'dollars': forms.HiddenInput(attrs={ 'data-bind': 'value: dollars' }), 'last_4_digits': forms.TextInput(attrs={ 'data-bind': 'valueInit: card_digits, value: card_digits' }), } last_4_digits = forms.CharField(widget=forms.HiddenInput(), required=True) name = forms.CharField(required=True) email = forms.CharField(required=True) def validate_stripe(self): stripe.Charge.create( amount=int(self.cleaned_data['dollars']) * 100, currency='usd', source=self.cleaned_data['stripe_token'], description='Read the Docs Sponsorship Payment', receipt_email=self.cleaned_data['email'] )
[ "logging.getLogger", "django.forms.HiddenInput", "django.utils.translation.ugettext_lazy", "django.forms.CharField", "django.forms.TextInput" ]
[((322, 349), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (339, 349), False, 'import logging\n'), ((2007, 2037), 'django.forms.CharField', 'forms.CharField', ([], {'required': '(True)'}), '(required=True)\n', (2022, 2037), False, 'from django import forms\n'), ((2050, 2080), 'django.forms.CharField', 'forms.CharField', ([], {'required': '(True)'}), '(required=True)\n', (2065, 2080), False, 'from django import forms\n'), ((4009, 4039), 'django.forms.CharField', 'forms.CharField', ([], {'required': '(True)'}), '(required=True)\n', (4024, 4039), False, 'from django import forms\n'), ((4052, 4082), 'django.forms.CharField', 'forms.CharField', ([], {'required': '(True)'}), '(required=True)\n', (4067, 4082), False, 'from django import forms\n'), ((919, 949), 'django.utils.translation.ugettext_lazy', '_', (['"""Make this donation public"""'], {}), "('Make this donation public')\n", (920, 949), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1006, 1069), 'django.utils.translation.ugettext_lazy', '_', (['"""Your name and image will be displayed on the donation page"""'], {}), "('Your name and image will be displayed on the donation page')\n", (1007, 1069), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1092, 1161), 'django.utils.translation.ugettext_lazy', '_', (['"""Your email is used for Gravatar and so we can send you a receipt"""'], {}), "('Your email is used for Gravatar and so we can send you a receipt')\n", (1093, 1161), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1187, 1259), 'django.utils.translation.ugettext_lazy', '_', (['"""URL of your company\'s logo, images should be 300x300 pixels or less"""'], {}), '("URL of your company\'s logo, images should be 300x300 pixels or less")\n', (1188, 1259), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1284, 1354), 'django.utils.translation.ugettext_lazy', '_', (['"""Companies donating over $400 can specify a logo URL and site link"""'], {}), "('Companies donating over $400 can specify a logo URL and site link')\n", (1285, 1354), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1409, 1465), 'django.forms.HiddenInput', 'forms.HiddenInput', ([], {'attrs': "{'data-bind': 'value: dollars'}"}), "(attrs={'data-bind': 'value: dollars'})\n", (1426, 1465), False, 'from django import forms\n'), ((1521, 1598), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'data-bind': 'value: logo_url, enable: urls_enabled'}"}), "(attrs={'data-bind': 'value: logo_url, enable: urls_enabled'})\n", (1536, 1598), False, 'from django import forms\n'), ((1654, 1731), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'data-bind': 'value: site_url, enable: urls_enabled'}"}), "(attrs={'data-bind': 'value: site_url, enable: urls_enabled'})\n", (1669, 1731), False, 'from django import forms\n'), ((1792, 1878), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'data-bind': 'valueInit: card_digits, value: card_digits'}"}), "(attrs={'data-bind':\n 'valueInit: card_digits, value: card_digits'})\n", (1807, 1878), False, 'from django import forms\n'), ((1960, 1979), 'django.forms.HiddenInput', 'forms.HiddenInput', ([], {}), '()\n', (1977, 1979), False, 'from django import forms\n'), ((3570, 3622), 'django.utils.translation.ugettext_lazy', '_', (['"""Your email is used so we can send you a receipt"""'], {}), "('Your email is used so we can send you a receipt')\n", (3571, 3622), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((3677, 3733), 'django.forms.HiddenInput', 'forms.HiddenInput', ([], {'attrs': "{'data-bind': 'value: dollars'}"}), "(attrs={'data-bind': 'value: dollars'})\n", (3694, 3733), False, 'from django import forms\n'), ((3794, 3880), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'data-bind': 'valueInit: card_digits, value: card_digits'}"}), "(attrs={'data-bind':\n 'valueInit: card_digits, value: card_digits'})\n", (3809, 3880), False, 'from django import forms\n'), ((3962, 3981), 'django.forms.HiddenInput', 'forms.HiddenInput', ([], {}), '()\n', (3979, 3981), False, 'from django import forms\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from .base import DataReaderBase from ..tools import COL, _get_dates, to_float, to_int import pandas as pd #from pandas.tseries.frequencies import to_offset from six.moves import cStringIO as StringIO import logging import traceback import datetime import json import token, tokenize def ymd_to_date(y, m, d): """ Returns date >>> expiration = {u'd': 1, u'm': 12, u'y': 2014} >>> ymd_to_date(**expiration) datetime.date(2014, 12, 1) >>> ymd_to_date(2014, 3, 1) datetime.date(2014, 3, 1) """ return(datetime.date(year=y, month=m, day=d)) def date_to_ymd(date): """ Returns dict like {'y': ..., 'm': ..., 'd': ...} >>> date_to_ymd(datetime.date(year=2010, month=1, day=3)) {'y': 2010, 'm': 1, 'd': 3} """ d = { 'y': date.year, 'm': date.month, 'd': date.day } return(d) def fix_lazy_json(in_text): """ Handle lazy JSON - to fix expecting property name this function fixes the json output from google http://stackoverflow.com/questions/4033633/handling-lazy-json-in-python-expecting-property-name """ tokengen = tokenize.generate_tokens(StringIO(in_text).readline) result = [] for tokid, tokval, _, _, _ in tokengen: # fix unquoted strings if (tokid == token.NAME): if tokval not in ['true', 'false', 'null', '-Infinity', 'Infinity', 'NaN']: tokid = token.STRING tokval = u'"%s"' % tokval # fix single-quoted strings elif (tokid == token.STRING): if tokval.startswith ("'"): tokval = u'"%s"' % tokval[1:-1].replace ('"', '\\"') # remove invalid commas elif (tokid == token.OP) and ((tokval == '}') or (tokval == ']')): if (len(result) > 0) and (result[-1][1] == ','): result.pop() # fix single-quoted strings elif (tokid == token.STRING): if tokval.startswith ("'"): tokval = u'"%s"' % tokval[1:-1].replace ('"', '\\"') result.append((tokid, tokval)) return tokenize.untokenize(result) def json_decode(json_string): try: ret = json.loads(json_string) except: json_string = fix_lazy_json(json_string) ret = json.loads(json_string) return ret class DataReaderGoogleFinanceOptions(DataReaderBase): """ DataReader to fetch data from Google Finance Options see https://www.google.com/finance/option_chain https://github.com/makmac213/python-google-option-chain http://www.drtomstarke.com/index.php/option-chains-from-google-finance-api """ def init(self, *args, **kwargs): self._get_multi = self._get_multi_todict def _get_one(self, name, *args, **kwargs): return(self._get_one_raw(name, 'All', 'json')) def _get_one_raw(self, symbol, typ='All', output='json', y='2014', m='12', d='1'): url = "https://www.google.com/finance/option_chain" params = { 'q': symbol, 'type': typ, 'output': output, } data = self._get_content(url, params) d = {} lst = [] for typ in [u'puts', u'calls']: df_typ = pd.DataFrame(data[typ]) df_typ['Type'] = typ lst.append(df_typ) del data[typ] for i, expiration in enumerate(data['expirations']): params = { 'q': symbol, 'output': output, 'expy': expiration['y'], 'expm': expiration['m'], 'expd': expiration['d'], } data = self._get_content(url, params) for typ in [u'puts', u'calls']: df_typ = pd.DataFrame(data[typ]) df_typ['Type'] = typ lst.append(df_typ) del data[typ] lst.append(df_typ) df = pd.concat(lst, axis=0, ignore_index=True) d_cols = { "a": "Ask", "b": "Bid", "p": "Last", "strike": "Strike", "expiry": "Expiry", "vol": "Volume", "name": "Name" } df = df.rename(columns=d_cols) """ d_cols = { "a": "ask", "b": "bid", "c": "change", "cid": "identity code", "cp": "cp" "cs": change direction. "chg" = up, "chr" = down, "chg"? "e": # I think this tells us something about what country where the stock is traded. "OPRA" means USA. "expiry": expiration date for this option "name": I don't know. I have never seen a value for this "oi": open interest. How many of these are currently being held by others. See, http://www.investopedia.com/terms/o/openinterest.asp "p": price, last "s": option code. Basically, Stock Symbol + 7 if mini option + date + "C" or "P" + price "strike": "strike price for this option" "vol": "the volume of options traded." } """ for col in ['Ask', 'Bid', 'c', 'cp', 'Last', 'Strike']: df[col] = df[col].map(to_float) for col in ['Volume', 'oi', 'cid']: df[col] = df[col].map(to_int) df['Expiry'] = pd.to_datetime(df['Expiry']) data['options'] = df data['underlying_id'] = int(data['underlying_id']) data['expiry'] = ymd_to_date(**data['expiry']) for i, expiration in enumerate(data['expirations']): data['expirations'][i] = ymd_to_date(**expiration) #for col in ['Volume']: # df[col] = df[col].fillna(0) #d = {} #d["options"] = df #return(d) return(data) def _get_content(self, url, params): #response = requests.get(url, params=params) response = self.session.get(url, params=params) if response.status_code == 200: content_json = response.text data = json_decode(content_json) return(data) if __name__ == "__main__": import doctest doctest.testmod()
[ "json.loads", "tokenize.untokenize", "six.moves.cStringIO", "doctest.testmod", "datetime.date", "pandas.DataFrame", "pandas.concat", "pandas.to_datetime" ]
[((588, 625), 'datetime.date', 'datetime.date', ([], {'year': 'y', 'month': 'm', 'day': 'd'}), '(year=y, month=m, day=d)\n', (601, 625), False, 'import datetime\n'), ((2146, 2173), 'tokenize.untokenize', 'tokenize.untokenize', (['result'], {}), '(result)\n', (2165, 2173), False, 'import token, tokenize\n'), ((6240, 6257), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (6255, 6257), False, 'import doctest\n'), ((2228, 2251), 'json.loads', 'json.loads', (['json_string'], {}), '(json_string)\n', (2238, 2251), False, 'import json\n'), ((3973, 4014), 'pandas.concat', 'pd.concat', (['lst'], {'axis': '(0)', 'ignore_index': '(True)'}), '(lst, axis=0, ignore_index=True)\n', (3982, 4014), True, 'import pandas as pd\n'), ((5409, 5437), 'pandas.to_datetime', 'pd.to_datetime', (["df['Expiry']"], {}), "(df['Expiry'])\n", (5423, 5437), True, 'import pandas as pd\n'), ((1207, 1224), 'six.moves.cStringIO', 'StringIO', (['in_text'], {}), '(in_text)\n', (1215, 1224), True, 'from six.moves import cStringIO as StringIO\n'), ((2327, 2350), 'json.loads', 'json.loads', (['json_string'], {}), '(json_string)\n', (2337, 2350), False, 'import json\n'), ((3274, 3297), 'pandas.DataFrame', 'pd.DataFrame', (['data[typ]'], {}), '(data[typ])\n', (3286, 3297), True, 'import pandas as pd\n'), ((3796, 3819), 'pandas.DataFrame', 'pd.DataFrame', (['data[typ]'], {}), '(data[typ])\n', (3808, 3819), True, 'import pandas as pd\n')]
from django.db.models import Q from django.shortcuts import render from django.http import Http404 # Create your views here. from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.decorators import api_view from .models import Product, Category from .serializers import ProductSerializer, CategorySerializer class LatestProductsList(APIView): def get(self, request, format=None): products = Product.objects.all()[0:4] serializer = ProductSerializer(products,many=True) return Response(serializer.data) class ProductDetail(APIView): def get_object(self, category_slug, product_slug): try: return Product.objects.filter(category__slug=category_slug).get(slug=product_slug) except Product.DoesNotExist: raise Http404 def get(self, request, category_slug, product_slug, format= None): product = self.get_object(category_slug, product_slug) serializer = ProductSerializer(product) return Response(serializer.data) class CategoryDetail(APIView): def get_object(self, category_slug): try: return Category.objects.get(slug=category_slug) except Category.DoesNotExist: raise Http404 def get(self, request, category_slug, format= None): category = self.get_object(category_slug) serializer = CategorySerializer(category) return Response(serializer.data) @api_view(['POST']) def search(request): query = request.data.get('query', '') if query: products = Product.objects.filter(Q(name__icontains=query) | Q(description__icontains=query)) serializer = ProductSerializer(products, many=True) return Response(serializer.data) else: return Response({"products": []})
[ "rest_framework.response.Response", "rest_framework.decorators.api_view", "django.db.models.Q" ]
[((1481, 1499), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (1489, 1499), False, 'from rest_framework.decorators import api_view\n'), ((559, 584), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (567, 584), False, 'from rest_framework.response import Response\n'), ((1040, 1065), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (1048, 1065), False, 'from rest_framework.response import Response\n'), ((1453, 1478), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (1461, 1478), False, 'from rest_framework.response import Response\n'), ((1755, 1780), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (1763, 1780), False, 'from rest_framework.response import Response\n'), ((1806, 1832), 'rest_framework.response.Response', 'Response', (["{'products': []}"], {}), "({'products': []})\n", (1814, 1832), False, 'from rest_framework.response import Response\n'), ((1620, 1644), 'django.db.models.Q', 'Q', ([], {'name__icontains': 'query'}), '(name__icontains=query)\n', (1621, 1644), False, 'from django.db.models import Q\n'), ((1647, 1678), 'django.db.models.Q', 'Q', ([], {'description__icontains': 'query'}), '(description__icontains=query)\n', (1648, 1678), False, 'from django.db.models import Q\n')]
########################################################################## # # Copyright (c) 2010-2012, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from __future__ import with_statement import os import sys import shutil import unittest import IECore class TestBasicPreset( unittest.TestCase ) : def testCopy( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) p = IECore.BasicPreset( testObj, testObj.parameters() ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) p2 = IECore.BasicPreset( testObj, testObj.parameters(), parameters=( testObj.parameters()["a"], ) ) self.assertTrue( p2.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p2.applicableTo( testObj2, testObj.parameters() ) ) p2( testObj2, testObj2.parameters() ) self.assertEqual( testObj2.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj2.parameters()["c"].getTypedValue(), 0.0 ) def testLoad( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised1" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) messageHandler = IECore.CapturingMessageHandler() with messageHandler : p = IECore.BasicPreset( os.path.join( savePath, "basicPresetLoadTest", "basicPresetLoadTest-1.cob" ) ) self.assertEqual( len( messageHandler.messages ), 0 ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) def testSave( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised1" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) preset = IECore.BasicPreset( testObj, testObj.parameters() ) # Save for the classLoader and check its there, we test the 'loadability' later... preset.save( savePath, "basicPresetTest" ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest", "basicPresetTest-1.cob" ) ) ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest", "basicPresetTest-1.py" ) ) ) # save without the classLoader and check its there preset.save( savePath, "basicPresetTest", classLoadable=False ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest.cob" ) ) ) # reload p = IECore.BasicPreset( os.path.join( savePath, "basicPresetTest.cob" ) ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) preset2 = IECore.BasicPreset( testObj, testObj.parameters(), parameters=( testObj.parameters()["a"], ) ) preset2.save( savePath, "basicPresetTest2", classLoadable=False ) #reload p2 = IECore.BasicPreset( os.path.join( savePath, "basicPresetTest2.cob" ) ) self.assertTrue( p2.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p2.applicableTo( testObj2, testObj.parameters() ) ) p2( testObj2, testObj2.parameters() ) self.assertEqual( testObj2.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj2.parameters()["c"].getTypedValue(), 0.0 ) def testClassLoader( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) preset = IECore.BasicPreset( testObj, testObj.parameters() ) preset.save( savePath, "basicPresetTestClassLoader" ) # make sure that no messages are emitted during loading messageHandler = IECore.CapturingMessageHandler() with messageHandler : loader = IECore.ClassLoader( IECore.SearchPath( savePath ) ) p = loader.load( "basicPresetTestClassLoader" )() self.assertEqual( len( messageHandler.messages ), 0 ) self.assertTrue( isinstance( p, IECore.BasicPreset ) ) p.metadata() def testClasses( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.ClassParameter( "b", "", "IECORE_OP_PATHS", os.path.join( "maths", "multiply" ), 2 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.ClassParameter( "c", "", "IECORE_OP_PATHS" ), ] ) classes1 = testObj.parameters()["b"].getClass( True ) classes2 = testObj2.parameters()["c"].getClass( True ) self.assertNotEqual( classes1[1:], classes2[1:] ) p = IECore.BasicPreset( testObj, testObj.parameters()["b"] ) self.assertTrue( p.applicableTo( testObj, testObj.parameters()["b"] ) ) self.assertFalse( p.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p.applicableTo( testObj2, testObj2.parameters()["c"] ) ) p( testObj2, testObj2.parameters()["c"] ) classes1 = testObj.parameters()["b"].getClass( True ) classes2 = testObj2.parameters()["c"].getClass( True ) self.assertEqual( classes1[1:], classes2[1:] ) def testClassVectors( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.ClassVectorParameter( "b", "", "IECORE_OP_PATHS" ), ] ) testObj.parameters()["b"].setClasses( [ ( "mult", os.path.join( "maths", "multiply" ), 2 ), ( "coIO", "compoundObjectInOut", 1 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.ClassVectorParameter( "c", "", "IECORE_OP_PATHS" ), ] ) classes1 = [ c[1:] for c in testObj.parameters()["b"].getClasses( True ) ] classes2 = [ c[1:] for c in testObj2.parameters()["c"].getClasses( True ) ] self.assertNotEqual( classes1, classes2 ) p = IECore.BasicPreset( testObj, testObj.parameters()["b"] ) self.assertTrue( p.applicableTo( testObj, testObj.parameters()["b"] ) ) self.assertFalse( p.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p.applicableTo( testObj2, testObj2.parameters()["c"] ) ) p( testObj2, testObj2.parameters()["c"] ) classes1 = [ c[1:] for c in testObj.parameters()["b"].getClasses( True ) ] classes2 = [ c[1:] for c in testObj2.parameters()["c"].getClasses( True ) ] self.assertEqual( classes1, classes2 ) def testCompoundVectorParameter( self ) : p = IECore.Parameterised( "test" ) p.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.CompoundVectorParameter( "c", "", members = [ IECore.StringVectorParameter( "s", "", IECore.StringVectorData() ), IECore.BoolVectorParameter( "b", "", IECore.BoolVectorData() ), ] ) ] ) p["c"]["s"].setValue( IECore.StringVectorData( [ "1", "2", "3" ] ) ) p["c"]["b"].setValue( IECore.BoolVectorData( [ True, False, True ] ) ) v = p.parameters().getValue().copy() preset = IECore.BasicPreset( p, p.parameters() ) self.assertTrue( preset.applicableTo( p, p.parameters() ) ) p.parameters().setValue( p.parameters().defaultValue ) self.assertNotEqual( p.parameters().getValue(), v ) preset( p, p.parameters() ) self.assertEqual( p.parameters().getValue(), v ) def tearDown( self ) : savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) paths = ( os.path.join( savePath, "basicPresetTest" ), os.path.join( savePath, "basicPresetTest.cob" ), os.path.join( savePath, "basicPresetTest2.cob" ), os.path.join( savePath, "basicPresetTestClassLoader" ), ) for p in paths : if os.path.isdir( p ) : shutil.rmtree( p ) elif os.path.isfile( p ) : os.remove( p ) if __name__ == "__main__": unittest.main()
[ "IECore.SearchPath", "IECore.Parameterised", "IECore.CapturingMessageHandler", "IECore.BoolVectorData", "os.path.join", "shutil.rmtree", "os.path.isfile", "os.path.dirname", "os.path.isdir", "IECore.ClassVectorParameter", "IECore.FloatParameter", "IECore.StringVectorData", "unittest.main", "IECore.BoolParameter", "IECore.ClassParameter", "os.remove" ]
[((11326, 11341), 'unittest.main', 'unittest.main', ([], {}), '()\n', (11339, 11341), False, 'import unittest\n'), ((1977, 2019), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (1997, 2019), False, 'import IECore\n'), ((2174, 2216), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised2"""'], {}), "('testParameterised2')\n", (2194, 2216), False, 'import IECore\n'), ((3305, 3347), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (3325, 3347), False, 'import IECore\n'), ((3502, 3544), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (3522, 3544), False, 'import IECore\n'), ((3807, 3839), 'IECore.CapturingMessageHandler', 'IECore.CapturingMessageHandler', ([], {}), '()\n', (3837, 3839), False, 'import IECore\n'), ((4487, 4529), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (4507, 4529), False, 'import IECore\n'), ((4684, 4726), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (4704, 4726), False, 'import IECore\n'), ((6730, 6772), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (6750, 6772), False, 'import IECore\n'), ((7210, 7242), 'IECore.CapturingMessageHandler', 'IECore.CapturingMessageHandler', ([], {}), '()\n', (7240, 7242), False, 'import IECore\n'), ((7557, 7599), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (7577, 7599), False, 'import IECore\n'), ((7808, 7850), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised2"""'], {}), "('testParameterised2')\n", (7828, 7850), False, 'import IECore\n'), ((8669, 8711), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised1"""'], {}), "('testParameterised1')\n", (8689, 8711), False, 'import IECore\n'), ((9039, 9081), 'IECore.Parameterised', 'IECore.Parameterised', (['"""testParameterised2"""'], {}), "('testParameterised2')\n", (9059, 9081), False, 'import IECore\n'), ((9980, 10008), 'IECore.Parameterised', 'IECore.Parameterised', (['"""test"""'], {}), "('test')\n", (10000, 10008), False, 'import IECore\n'), ((5624, 5669), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest.cob"""'], {}), "(savePath, 'basicPresetTest.cob')\n", (5636, 5669), False, 'import os\n'), ((6309, 6355), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest2.cob"""'], {}), "(savePath, 'basicPresetTest2.cob')\n", (6321, 6355), False, 'import os\n'), ((10355, 10395), 'IECore.StringVectorData', 'IECore.StringVectorData', (["['1', '2', '3']"], {}), "(['1', '2', '3'])\n", (10378, 10395), False, 'import IECore\n'), ((10426, 10468), 'IECore.BoolVectorData', 'IECore.BoolVectorData', (['[True, False, True]'], {}), '([True, False, True])\n', (10447, 10468), False, 'import IECore\n'), ((10965, 11006), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest"""'], {}), "(savePath, 'basicPresetTest')\n", (10977, 11006), False, 'import os\n'), ((11013, 11058), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest.cob"""'], {}), "(savePath, 'basicPresetTest.cob')\n", (11025, 11058), False, 'import os\n'), ((11065, 11111), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest2.cob"""'], {}), "(savePath, 'basicPresetTest2.cob')\n", (11077, 11111), False, 'import os\n'), ((11118, 11170), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTestClassLoader"""'], {}), "(savePath, 'basicPresetTestClassLoader')\n", (11130, 11170), False, 'import os\n'), ((11204, 11220), 'os.path.isdir', 'os.path.isdir', (['p'], {}), '(p)\n', (11217, 11220), False, 'import os\n'), ((2069, 2104), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(True)'], {}), "('a', '', True)\n", (2089, 2104), False, 'import IECore\n'), ((2112, 2147), 'IECore.FloatParameter', 'IECore.FloatParameter', (['"""b"""', '""""""', '(1.0)'], {}), "('b', '', 1.0)\n", (2133, 2147), False, 'import IECore\n'), ((2267, 2303), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(False)'], {}), "('a', '', False)\n", (2287, 2303), False, 'import IECore\n'), ((2311, 2346), 'IECore.FloatParameter', 'IECore.FloatParameter', (['"""c"""', '""""""', '(0.0)'], {}), "('c', '', 0.0)\n", (2332, 2346), False, 'import IECore\n'), ((3397, 3432), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(True)'], {}), "('a', '', True)\n", (3417, 3432), False, 'import IECore\n'), ((3440, 3475), 'IECore.FloatParameter', 'IECore.FloatParameter', (['"""b"""', '""""""', '(1.0)'], {}), "('b', '', 1.0)\n", (3461, 3475), False, 'import IECore\n'), ((3595, 3631), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(False)'], {}), "('a', '', False)\n", (3615, 3631), False, 'import IECore\n'), ((3639, 3674), 'IECore.FloatParameter', 'IECore.FloatParameter', (['"""c"""', '""""""', '(0.0)'], {}), "('c', '', 0.0)\n", (3660, 3674), False, 'import IECore\n'), ((3732, 3757), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3747, 3757), False, 'import os\n'), ((3892, 3966), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetLoadTest"""', '"""basicPresetLoadTest-1.cob"""'], {}), "(savePath, 'basicPresetLoadTest', 'basicPresetLoadTest-1.cob')\n", (3904, 3966), False, 'import os\n'), ((4579, 4614), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(True)'], {}), "('a', '', True)\n", (4599, 4614), False, 'import IECore\n'), ((4622, 4657), 'IECore.FloatParameter', 'IECore.FloatParameter', (['"""b"""', '""""""', '(1.0)'], {}), "('b', '', 1.0)\n", (4643, 4657), False, 'import IECore\n'), ((4777, 4813), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(False)'], {}), "('a', '', False)\n", (4797, 4813), False, 'import IECore\n'), ((4821, 4856), 'IECore.FloatParameter', 'IECore.FloatParameter', (['"""c"""', '""""""', '(0.0)'], {}), "('c', '', 0.0)\n", (4842, 4856), False, 'import IECore\n'), ((4914, 4939), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (4929, 4939), False, 'import os\n'), ((5199, 5265), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest"""', '"""basicPresetTest-1.cob"""'], {}), "(savePath, 'basicPresetTest', 'basicPresetTest-1.cob')\n", (5211, 5265), False, 'import os\n'), ((5307, 5372), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest"""', '"""basicPresetTest-1.py"""'], {}), "(savePath, 'basicPresetTest', 'basicPresetTest-1.py')\n", (5319, 5372), False, 'import os\n'), ((5534, 5579), 'os.path.join', 'os.path.join', (['savePath', '"""basicPresetTest.cob"""'], {}), "(savePath, 'basicPresetTest.cob')\n", (5546, 5579), False, 'import os\n'), ((6822, 6857), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(True)'], {}), "('a', '', True)\n", (6842, 6857), False, 'import IECore\n'), ((6865, 6900), 'IECore.FloatParameter', 'IECore.FloatParameter', (['"""b"""', '""""""', '(1.0)'], {}), "('b', '', 1.0)\n", (6886, 6900), False, 'import IECore\n'), ((6958, 6983), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (6973, 6983), False, 'import os\n'), ((7300, 7327), 'IECore.SearchPath', 'IECore.SearchPath', (['savePath'], {}), '(savePath)\n', (7317, 7327), False, 'import IECore\n'), ((7649, 7684), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(True)'], {}), "('a', '', True)\n", (7669, 7684), False, 'import IECore\n'), ((7901, 7950), 'IECore.ClassParameter', 'IECore.ClassParameter', (['"""c"""', '""""""', '"""IECORE_OP_PATHS"""'], {}), "('c', '', 'IECORE_OP_PATHS')\n", (7922, 7950), False, 'import IECore\n'), ((8761, 8796), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(True)'], {}), "('a', '', True)\n", (8781, 8796), False, 'import IECore\n'), ((8804, 8859), 'IECore.ClassVectorParameter', 'IECore.ClassVectorParameter', (['"""b"""', '""""""', '"""IECORE_OP_PATHS"""'], {}), "('b', '', 'IECORE_OP_PATHS')\n", (8831, 8859), False, 'import IECore\n'), ((9132, 9187), 'IECore.ClassVectorParameter', 'IECore.ClassVectorParameter', (['"""c"""', '""""""', '"""IECORE_OP_PATHS"""'], {}), "('c', '', 'IECORE_OP_PATHS')\n", (9159, 9187), False, 'import IECore\n'), ((10052, 10088), 'IECore.BoolParameter', 'IECore.BoolParameter', (['"""a"""', '""""""', '(False)'], {}), "('a', '', False)\n", (10072, 10088), False, 'import IECore\n'), ((10895, 10920), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (10910, 10920), False, 'import os\n'), ((11229, 11245), 'shutil.rmtree', 'shutil.rmtree', (['p'], {}), '(p)\n', (11242, 11245), False, 'import shutil\n'), ((11256, 11273), 'os.path.isfile', 'os.path.isfile', (['p'], {}), '(p)\n', (11270, 11273), False, 'import os\n'), ((7743, 7776), 'os.path.join', 'os.path.join', (['"""maths"""', '"""multiply"""'], {}), "('maths', 'multiply')\n", (7755, 7776), False, 'import os\n'), ((8932, 8965), 'os.path.join', 'os.path.join', (['"""maths"""', '"""multiply"""'], {}), "('maths', 'multiply')\n", (8944, 8965), False, 'import os\n'), ((11282, 11294), 'os.remove', 'os.remove', (['p'], {}), '(p)\n', (11291, 11294), False, 'import os\n'), ((10209, 10234), 'IECore.StringVectorData', 'IECore.StringVectorData', ([], {}), '()\n', (10232, 10234), False, 'import IECore\n'), ((10281, 10304), 'IECore.BoolVectorData', 'IECore.BoolVectorData', ([], {}), '()\n', (10302, 10304), False, 'import IECore\n')]
from zeit.cms.i18n import MessageFactory as _ import zope.interface import zope.schema class IGlobalSettings(zope.interface.Interface): """Global CMS settings.""" default_year = zope.schema.Int( title=_("Default year"), min=1900, max=2100) default_volume = zope.schema.Int( title=_("Default volume"), min=1, max=54) def get_working_directory(template): """Return the collection which is the main working directory. template: Template which will be filled with year and volume. In ``template`` the placeholders $year and $volume will be replaced. Example: 'online/$year/$volume/foo' If the respective collection does not exist, it will be created before returning it. """
[ "zeit.cms.i18n.MessageFactory" ]
[((220, 237), 'zeit.cms.i18n.MessageFactory', '_', (['"""Default year"""'], {}), "('Default year')\n", (221, 237), True, 'from zeit.cms.i18n import MessageFactory as _\n'), ((328, 347), 'zeit.cms.i18n.MessageFactory', '_', (['"""Default volume"""'], {}), "('Default volume')\n", (329, 347), True, 'from zeit.cms.i18n import MessageFactory as _\n')]
import imtreat img = imtreat.imageManagerClass.openImageFunction("../images/soleil.png", 0) img = imtreat.definedModesClass.detailEnhanceFunction(img) imtreat.imageManagerClass.saveImageFunction("/Téléchargements/", "image_1", ".png", img)
[ "imtreat.imageManagerClass.saveImageFunction", "imtreat.imageManagerClass.openImageFunction", "imtreat.definedModesClass.detailEnhanceFunction" ]
[((22, 92), 'imtreat.imageManagerClass.openImageFunction', 'imtreat.imageManagerClass.openImageFunction', (['"""../images/soleil.png"""', '(0)'], {}), "('../images/soleil.png', 0)\n", (65, 92), False, 'import imtreat\n'), ((100, 152), 'imtreat.definedModesClass.detailEnhanceFunction', 'imtreat.definedModesClass.detailEnhanceFunction', (['img'], {}), '(img)\n', (147, 152), False, 'import imtreat\n'), ((154, 246), 'imtreat.imageManagerClass.saveImageFunction', 'imtreat.imageManagerClass.saveImageFunction', (['"""/Téléchargements/"""', '"""image_1"""', '""".png"""', 'img'], {}), "('/Téléchargements/', 'image_1',\n '.png', img)\n", (197, 246), False, 'import imtreat\n')]
import requests words_list = requests.get("https://raw.githubusercontent.com/atebits/Words/master/Words/fr.txt").text words_list = filter(lambda x: len(x) > 4, words_list.split('\n')) path = input("Chemin d'écriture ? (words.txt) ") if path == "": path = "./words.txt" with open(path, "w", encoding="utf-8") as file: file.write('\n'.join(words_list))
[ "requests.get" ]
[((30, 118), 'requests.get', 'requests.get', (['"""https://raw.githubusercontent.com/atebits/Words/master/Words/fr.txt"""'], {}), "(\n 'https://raw.githubusercontent.com/atebits/Words/master/Words/fr.txt')\n", (42, 118), False, 'import requests\n')]
import unittest from unittest import mock import os import subprocess from testfixtures import TempDirectory from simplegallery.upload.uploader_factory import get_uploader class AWSUploaderTestCase(unittest.TestCase): def test_no_location(self): uploader = get_uploader('aws') self.assertFalse(uploader.check_location('')) @mock.patch('subprocess.run') def test_upload_gallery(self, subprocess_run): subprocess_run.return_value = subprocess.CompletedProcess([], returncode=0) with TempDirectory() as tempdir: # Setup mock file and uploader tempdir.write('index.html', b'') gallery_path = os.path.join(tempdir.path, 'index.html') uploader = get_uploader('aws') # Test upload to bucket uploader.upload_gallery('s3://testbucket/path/', gallery_path) subprocess_run.assert_called_with( ['aws', 's3', 'sync', gallery_path, 's3://testbucket/path/', '--exclude', '.DS_Store']) # Test upload to bucket without prefix uploader.upload_gallery('testbucket/path/', gallery_path) subprocess_run.assert_called_with( ['aws', 's3', 'sync', gallery_path, 's3://testbucket/path/', '--exclude', '.DS_Store']) # Test upload to bucket without trailing / uploader.upload_gallery('s3://testbucket/path', gallery_path) subprocess_run.assert_called_with( ['aws', 's3', 'sync', gallery_path, 's3://testbucket/path/', '--exclude', '.DS_Store']) if __name__ == '__main__': unittest.main()
[ "testfixtures.TempDirectory", "subprocess.CompletedProcess", "os.path.join", "unittest.main", "unittest.mock.patch", "simplegallery.upload.uploader_factory.get_uploader" ]
[((352, 380), 'unittest.mock.patch', 'mock.patch', (['"""subprocess.run"""'], {}), "('subprocess.run')\n", (362, 380), False, 'from unittest import mock\n'), ((1607, 1622), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1620, 1622), False, 'import unittest\n'), ((272, 291), 'simplegallery.upload.uploader_factory.get_uploader', 'get_uploader', (['"""aws"""'], {}), "('aws')\n", (284, 291), False, 'from simplegallery.upload.uploader_factory import get_uploader\n'), ((470, 515), 'subprocess.CompletedProcess', 'subprocess.CompletedProcess', (['[]'], {'returncode': '(0)'}), '([], returncode=0)\n', (497, 515), False, 'import subprocess\n'), ((530, 545), 'testfixtures.TempDirectory', 'TempDirectory', ([], {}), '()\n', (543, 545), False, 'from testfixtures import TempDirectory\n'), ((673, 713), 'os.path.join', 'os.path.join', (['tempdir.path', '"""index.html"""'], {}), "(tempdir.path, 'index.html')\n", (685, 713), False, 'import os\n'), ((737, 756), 'simplegallery.upload.uploader_factory.get_uploader', 'get_uploader', (['"""aws"""'], {}), "('aws')\n", (749, 756), False, 'from simplegallery.upload.uploader_factory import get_uploader\n')]
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import re from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment log = logging.getLogger(__name__) class SLURMEnvironment(ClusterEnvironment): """Cluster environment for training on a cluster managed by SLURM.""" @property def creates_processes_externally(self) -> bool: return True @staticmethod def detect() -> bool: """Returns ``True`` if the current process was launched on a SLURM cluster.""" return "SLURM_NTASKS" in os.environ @property def main_address(self) -> str: # figure out the root node addr slurm_nodelist = os.environ.get("SLURM_NODELIST") if slurm_nodelist: root_node = slurm_nodelist.split(" ")[0].split(",")[0] else: root_node = "127.0.0.1" root_node = self.resolve_root_node_address(root_node) os.environ["MASTER_ADDR"] = root_node log.debug(f"MASTER_ADDR: {os.environ['MASTER_ADDR']}") return root_node @property def main_port(self) -> int: # ----------------------- # SLURM JOB = PORT number # ----------------------- # this way every process knows what port to use default_port = os.environ.get("SLURM_JOB_ID") if default_port: # use the last 4 numbers in the job id as the id default_port = default_port[-4:] # all ports should be in the 10k+ range default_port = int(default_port) + 15000 else: default_port = 12910 # ----------------------- # PORT NUMBER = MASTER_PORT # ----------------------- # in case the user passed it in if "MASTER_PORT" in os.environ: default_port = os.environ["MASTER_PORT"] else: os.environ["MASTER_PORT"] = str(default_port) log.debug(f"MASTER_PORT: {os.environ['MASTER_PORT']}") return int(default_port) def world_size(self) -> int: return int(os.environ["SLURM_NTASKS"]) def set_world_size(self, size: int) -> None: log.debug("SLURMEnvironment.set_world_size was called, but setting world size is not allowed. Ignored.") def global_rank(self) -> int: return int(os.environ["SLURM_PROCID"]) def set_global_rank(self, rank: int) -> None: log.debug("SLURMEnvironment.set_global_rank was called, but setting global rank is not allowed. Ignored.") def local_rank(self) -> int: return int(os.environ["SLURM_LOCALID"]) def node_rank(self) -> int: return int(os.environ["SLURM_NODEID"]) def resolve_root_node_address(self, root_node: str) -> str: if "[" in root_node: name, numbers = root_node.split("[", maxsplit=1) number = numbers.split(",", maxsplit=1)[0] if "-" in number: number = number.split("-")[0] number = re.sub("[^0-9]", "", number) root_node = name + number return root_node
[ "logging.getLogger", "re.sub", "os.environ.get" ]
[((720, 747), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (737, 747), False, 'import logging\n'), ((1246, 1278), 'os.environ.get', 'os.environ.get', (['"""SLURM_NODELIST"""'], {}), "('SLURM_NODELIST')\n", (1260, 1278), False, 'import os\n'), ((1848, 1878), 'os.environ.get', 'os.environ.get', (['"""SLURM_JOB_ID"""'], {}), "('SLURM_JOB_ID')\n", (1862, 1878), False, 'import os\n'), ((3532, 3560), 're.sub', 're.sub', (['"""[^0-9]"""', '""""""', 'number'], {}), "('[^0-9]', '', number)\n", (3538, 3560), False, 'import re\n')]
# # Copyright (c) 2021 The GPflux Contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import numpy as np import pytest import tensorflow as tf import tensorflow_probability as tfp from gpflow.kullback_leiblers import gauss_kl from gpflux.encoders import DirectlyParameterizedNormalDiag from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer tf.keras.backend.set_floatx("float64") ############ # Utilities ############ def _zero_one_normal_prior(w_dim): """ N(0, I) prior """ return tfp.distributions.MultivariateNormalDiag(loc=np.zeros(w_dim), scale_diag=np.ones(w_dim)) def get_distributions_with_w_dim(): distributions = [] for d in [1, 5]: mean = np.zeros(d) scale_tri_l = np.eye(d) mvn = tfp.distributions.MultivariateNormalTriL(mean, scale_tri_l) std = np.ones(d) mvn_diag = tfp.distributions.MultivariateNormalDiag(mean, std) distributions.append((mvn, d)) distributions.append((mvn_diag, d)) return distributions ############ # Tests ############ @pytest.mark.parametrize("distribution, w_dim", get_distributions_with_w_dim()) def test_local_kls(distribution, w_dim): lv = LatentVariableLayer(encoder=None, prior=distribution) # test kl is 0 when posteriors == priors posterior = distribution assert lv._local_kls(posterior) == 0 # test kl > 0 when posteriors != priors batch_size = 10 params = distribution.parameters posterior_params = { k: [v + 0.5 for _ in range(batch_size)] for k, v in params.items() if isinstance(v, np.ndarray) } posterior = lv.distribution_class(**posterior_params) local_kls = lv._local_kls(posterior) assert np.all(local_kls > 0) assert local_kls.shape == (batch_size,) @pytest.mark.parametrize("w_dim", [1, 5]) def test_local_kl_gpflow_consistency(w_dim): num_data = 400 means = np.random.randn(num_data, w_dim) encoder = DirectlyParameterizedNormalDiag(num_data, w_dim, means) lv = LatentVariableLayer(encoder=encoder, prior=_zero_one_normal_prior(w_dim)) posteriors = lv._inference_posteriors( [np.random.randn(num_data, 3), np.random.randn(num_data, 2)] ) q_mu = posteriors.parameters["loc"] q_sqrt = posteriors.parameters["scale_diag"] gpflow_local_kls = gauss_kl(q_mu, q_sqrt) tfp_local_kls = tf.reduce_sum(lv._local_kls(posteriors)) np.testing.assert_allclose(tfp_local_kls, gpflow_local_kls, rtol=1e-10) class ArrayMatcher: def __init__(self, expected): self.expected = expected def __eq__(self, actual): return np.allclose(actual, self.expected, equal_nan=True) @pytest.mark.parametrize("w_dim", [1, 5]) def test_latent_variable_layer_losses(mocker, w_dim): num_data, x_dim, y_dim = 43, 3, 1 prior_shape = (w_dim,) posteriors_shape = (num_data, w_dim) prior = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*prior_shape), scale_diag=np.random.randn(*prior_shape) ** 2, ) posteriors = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*posteriors_shape), scale_diag=np.random.randn(*posteriors_shape) ** 2, ) encoder = mocker.Mock(return_value=(posteriors.loc, posteriors.scale.diag)) lv = LatentVariableLayer(encoder=encoder, prior=prior) inputs = np.full((num_data, x_dim), np.nan) targets = np.full((num_data, y_dim), np.nan) observations = [inputs, targets] encoder_inputs = np.concatenate(observations, axis=-1) _ = lv(inputs) encoder.assert_not_called() assert lv.losses == [0.0] _ = lv(inputs, observations=observations, training=True) # assert_called_once_with uses == for comparison which fails on arrays encoder.assert_called_once_with(ArrayMatcher(encoder_inputs), training=True) expected_loss = [tf.reduce_mean(posteriors.kl_divergence(prior))] np.testing.assert_equal(lv.losses, expected_loss) # also checks shapes match @pytest.mark.parametrize("w_dim", [1, 5]) @pytest.mark.parametrize("seed2", [None, 42]) def test_latent_variable_layer_samples(mocker, test_data, w_dim, seed2): seed = 123 inputs, targets = test_data num_data, x_dim = inputs.shape prior_shape = (w_dim,) posteriors_shape = (num_data, w_dim) prior = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*prior_shape), scale_diag=np.random.randn(*prior_shape) ** 2, ) posteriors = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*posteriors_shape), scale_diag=np.random.randn(*posteriors_shape) ** 2, ) encoder = mocker.Mock(return_value=(posteriors.loc, posteriors.scale.diag)) lv = LatentVariableLayer(prior=prior, encoder=encoder) tf.random.set_seed(seed) sample_prior = lv(inputs, seed=seed2) tf.random.set_seed(seed) prior_expected = np.concatenate([inputs, prior.sample(num_data, seed=seed2)], axis=-1) np.testing.assert_array_equal(sample_prior, prior_expected) tf.random.set_seed(seed) sample_posterior = lv(inputs, observations=[inputs, targets], training=True, seed=seed2) tf.random.set_seed(seed) posterior_expected = np.concatenate([inputs, posteriors.sample(seed=seed2)], axis=-1) np.testing.assert_array_equal(sample_posterior, posterior_expected) def test_no_tensorflow_metaclass_overwritten(): """ LayerWithObservations is a subclass of tf.keras.layers.Layer (via TrackableLayer); this test ensures that TrackableLayer does not have a metaclass, and hence by adding the ABCMeta to LayerWithObservations we are not accidentally removing some required TensorFlow magic metaclass. """ assert LayerWithObservations.__bases__ == (TrackableLayer,) assert type(TrackableLayer) is type assert type(LayerWithObservations) is abc.ABCMeta
[ "numpy.testing.assert_equal", "tensorflow_probability.distributions.MultivariateNormalDiag", "tensorflow_probability.distributions.MultivariateNormalTriL", "numpy.testing.assert_allclose", "numpy.concatenate", "numpy.testing.assert_array_equal", "numpy.eye", "numpy.allclose", "gpflux.encoders.DirectlyParameterizedNormalDiag", "numpy.ones", "tensorflow.keras.backend.set_floatx", "numpy.random.randn", "gpflux.layers.LatentVariableLayer", "tensorflow.random.set_seed", "gpflow.kullback_leiblers.gauss_kl", "pytest.mark.parametrize", "numpy.zeros", "numpy.full", "numpy.all" ]
[((897, 935), 'tensorflow.keras.backend.set_floatx', 'tf.keras.backend.set_floatx', (['"""float64"""'], {}), "('float64')\n", (924, 935), True, 'import tensorflow as tf\n'), ((2330, 2370), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_dim"""', '[1, 5]'], {}), "('w_dim', [1, 5])\n", (2353, 2370), False, 'import pytest\n'), ((3216, 3256), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_dim"""', '[1, 5]'], {}), "('w_dim', [1, 5])\n", (3239, 3256), False, 'import pytest\n'), ((4542, 4582), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_dim"""', '[1, 5]'], {}), "('w_dim', [1, 5])\n", (4565, 4582), False, 'import pytest\n'), ((4584, 4628), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed2"""', '[None, 42]'], {}), "('seed2', [None, 42])\n", (4607, 4628), False, 'import pytest\n'), ((1728, 1781), 'gpflux.layers.LatentVariableLayer', 'LatentVariableLayer', ([], {'encoder': 'None', 'prior': 'distribution'}), '(encoder=None, prior=distribution)\n', (1747, 1781), False, 'from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer\n'), ((2261, 2282), 'numpy.all', 'np.all', (['(local_kls > 0)'], {}), '(local_kls > 0)\n', (2267, 2282), True, 'import numpy as np\n'), ((2447, 2479), 'numpy.random.randn', 'np.random.randn', (['num_data', 'w_dim'], {}), '(num_data, w_dim)\n', (2462, 2479), True, 'import numpy as np\n'), ((2494, 2549), 'gpflux.encoders.DirectlyParameterizedNormalDiag', 'DirectlyParameterizedNormalDiag', (['num_data', 'w_dim', 'means'], {}), '(num_data, w_dim, means)\n', (2525, 2549), False, 'from gpflux.encoders import DirectlyParameterizedNormalDiag\n'), ((2866, 2888), 'gpflow.kullback_leiblers.gauss_kl', 'gauss_kl', (['q_mu', 'q_sqrt'], {}), '(q_mu, q_sqrt)\n', (2874, 2888), False, 'from gpflow.kullback_leiblers import gauss_kl\n'), ((2955, 3026), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['tfp_local_kls', 'gpflow_local_kls'], {'rtol': '(1e-10)'}), '(tfp_local_kls, gpflow_local_kls, rtol=1e-10)\n', (2981, 3026), True, 'import numpy as np\n'), ((3841, 3890), 'gpflux.layers.LatentVariableLayer', 'LatentVariableLayer', ([], {'encoder': 'encoder', 'prior': 'prior'}), '(encoder=encoder, prior=prior)\n', (3860, 3890), False, 'from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer\n'), ((3905, 3939), 'numpy.full', 'np.full', (['(num_data, x_dim)', 'np.nan'], {}), '((num_data, x_dim), np.nan)\n', (3912, 3939), True, 'import numpy as np\n'), ((3954, 3988), 'numpy.full', 'np.full', (['(num_data, y_dim)', 'np.nan'], {}), '((num_data, y_dim), np.nan)\n', (3961, 3988), True, 'import numpy as np\n'), ((4047, 4084), 'numpy.concatenate', 'np.concatenate', (['observations'], {'axis': '(-1)'}), '(observations, axis=-1)\n', (4061, 4084), True, 'import numpy as np\n'), ((4461, 4510), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['lv.losses', 'expected_loss'], {}), '(lv.losses, expected_loss)\n', (4484, 4510), True, 'import numpy as np\n'), ((5277, 5326), 'gpflux.layers.LatentVariableLayer', 'LatentVariableLayer', ([], {'prior': 'prior', 'encoder': 'encoder'}), '(prior=prior, encoder=encoder)\n', (5296, 5326), False, 'from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer\n'), ((5332, 5356), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5350, 5356), True, 'import tensorflow as tf\n'), ((5403, 5427), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5421, 5427), True, 'import tensorflow as tf\n'), ((5523, 5582), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['sample_prior', 'prior_expected'], {}), '(sample_prior, prior_expected)\n', (5552, 5582), True, 'import numpy as np\n'), ((5588, 5612), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5606, 5612), True, 'import tensorflow as tf\n'), ((5710, 5734), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5728, 5734), True, 'import tensorflow as tf\n'), ((5829, 5896), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['sample_posterior', 'posterior_expected'], {}), '(sample_posterior, posterior_expected)\n', (5858, 5896), True, 'import numpy as np\n'), ((1236, 1247), 'numpy.zeros', 'np.zeros', (['d'], {}), '(d)\n', (1244, 1247), True, 'import numpy as np\n'), ((1270, 1279), 'numpy.eye', 'np.eye', (['d'], {}), '(d)\n', (1276, 1279), True, 'import numpy as np\n'), ((1294, 1353), 'tensorflow_probability.distributions.MultivariateNormalTriL', 'tfp.distributions.MultivariateNormalTriL', (['mean', 'scale_tri_l'], {}), '(mean, scale_tri_l)\n', (1334, 1353), True, 'import tensorflow_probability as tfp\n'), ((1369, 1379), 'numpy.ones', 'np.ones', (['d'], {}), '(d)\n', (1376, 1379), True, 'import numpy as np\n'), ((1399, 1450), 'tensorflow_probability.distributions.MultivariateNormalDiag', 'tfp.distributions.MultivariateNormalDiag', (['mean', 'std'], {}), '(mean, std)\n', (1439, 1450), True, 'import tensorflow_probability as tfp\n'), ((3162, 3212), 'numpy.allclose', 'np.allclose', (['actual', 'self.expected'], {'equal_nan': '(True)'}), '(actual, self.expected, equal_nan=True)\n', (3173, 3212), True, 'import numpy as np\n'), ((1094, 1109), 'numpy.zeros', 'np.zeros', (['w_dim'], {}), '(w_dim)\n', (1102, 1109), True, 'import numpy as np\n'), ((1122, 1136), 'numpy.ones', 'np.ones', (['w_dim'], {}), '(w_dim)\n', (1129, 1136), True, 'import numpy as np\n'), ((2686, 2714), 'numpy.random.randn', 'np.random.randn', (['num_data', '(3)'], {}), '(num_data, 3)\n', (2701, 2714), True, 'import numpy as np\n'), ((2716, 2744), 'numpy.random.randn', 'np.random.randn', (['num_data', '(2)'], {}), '(num_data, 2)\n', (2731, 2744), True, 'import numpy as np\n'), ((3485, 3514), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (3500, 3514), True, 'import numpy as np\n'), ((3648, 3682), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (3663, 3682), True, 'import numpy as np\n'), ((4921, 4950), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (4936, 4950), True, 'import numpy as np\n'), ((5084, 5118), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (5099, 5118), True, 'import numpy as np\n'), ((3535, 3564), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (3550, 3564), True, 'import numpy as np\n'), ((3703, 3737), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (3718, 3737), True, 'import numpy as np\n'), ((4971, 5000), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (4986, 5000), True, 'import numpy as np\n'), ((5139, 5173), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (5154, 5173), True, 'import numpy as np\n')]
from floodsystem.stationdata import build_station_list from floodsystem.flood import stations_highest_rel_level def run(): stations = build_station_list() warning_stations = stations_highest_rel_level(stations,10) for entry in warning_stations: print(entry[0].name,entry[1]) if __name__ == "__main__": print("*** Task 2C: CUED Part IA Flood Warning System ***") run()
[ "floodsystem.stationdata.build_station_list", "floodsystem.flood.stations_highest_rel_level" ]
[((139, 159), 'floodsystem.stationdata.build_station_list', 'build_station_list', ([], {}), '()\n', (157, 159), False, 'from floodsystem.stationdata import build_station_list\n'), ((183, 223), 'floodsystem.flood.stations_highest_rel_level', 'stations_highest_rel_level', (['stations', '(10)'], {}), '(stations, 10)\n', (209, 223), False, 'from floodsystem.flood import stations_highest_rel_level\n')]
import logging import time from datetime import timedelta from typing import List from homeassistant.components.binary_sensor import ( BinarySensorEntity, DEVICE_CLASS_MOTION ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import ATTR_ATTRIBUTION from homeassistant.core import HomeAssistant from wyzeapy.base_client import Device, AccessTokenError from wyzeapy.client import Client from wyzeapy.types import PropertyIDs from .const import DOMAIN _LOGGER = logging.getLogger(__name__) ATTRIBUTION = "Data provided by Wyze" SCAN_INTERVAL = timedelta(seconds=10) async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities): _LOGGER.debug("""Creating new WyzeApi binary sensor component""") client: Client = hass.data[DOMAIN][config_entry.entry_id] def get_cameras() -> List[Device]: try: return client.get_cameras() except AccessTokenError as e: _LOGGER.warning(e) client.reauthenticate() return client.get_cameras() cameras = [WyzeCameraMotion(client, camera) for camera in await hass.async_add_executor_job(get_cameras)] async_add_entities(cameras, True) class WyzeCameraMotion(BinarySensorEntity): _on: bool _available: bool def __init__(self, wyzeapi_client: Client, device: Device): self._client = wyzeapi_client self._device = device self._last_event = int(str(int(time.time())) + "000") @property def device_info(self): return { "identifiers": { (DOMAIN, self._device.mac) }, "name": self.name, "manufacturer": "WyzeLabs", "model": self._device.product_model } @property def available(self) -> bool: return self._available @property def name(self): """Return the display name of this switch.""" return self._device.nickname @property def is_on(self): """Return true if switch is on.""" return self._on @property def unique_id(self): return "{}-motion".format(self._device.mac) @property def device_state_attributes(self): """Return device attributes of the entity.""" return { ATTR_ATTRIBUTION: ATTRIBUTION, "state": self.is_on, "available": self.available, "device model": self._device.product_model, "mac": self.unique_id } @property def device_class(self): return DEVICE_CLASS_MOTION def update(self): try: device_info = self._client.get_info(self._device) except AccessTokenError: self._client.reauthenticate() device_info = self._client.get_info(self._device) for property_id, value in device_info: if property_id == PropertyIDs.AVAILABLE: self._available = True if value == "1" else False latest_event = self._client.get_latest_event(self._device) if latest_event is not None: if latest_event.event_ts > self._last_event: self._on = True self._last_event = latest_event.event_ts else: self._on = False self._last_event = latest_event.event_ts else: self._on = False
[ "logging.getLogger", "datetime.timedelta", "time.time" ]
[((500, 527), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (517, 527), False, 'import logging\n'), ((582, 603), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(10)'}), '(seconds=10)\n', (591, 603), False, 'from datetime import timedelta\n'), ((1476, 1487), 'time.time', 'time.time', ([], {}), '()\n', (1485, 1487), False, 'import time\n')]
""" This script will modulate the blinky lights using the following algorithm: 1) uses user-provided location to obtain row of pixel data from bathy image 2) samples a 'number of LEDs' number of pixels from that row 3) shifts the sampled row data to center it at the location specified by user 4) displays resulting pixels on Blinky Tape 5) shifts next row by a given latitude, also specified by user 6) sleeps for user-specified period of time Uses the following arguments: -l/--location: tuple Location of the user in tuple(lat, lon). This represents the center of the LED strip. Defaults to (0, 0) -u/--update-interval: int Update interval of the script, in minutes. Defaults to 10. -p/--port: str Serial port of the BlinkyLight (e.g., 'ttyAMA0', 'COM3'). Defaults to 'COM5'. -d/--delta_latitude: int Vertical change in latitude every update rate. May be 0, but this will result in a never-changing LEDs. -i/--image: str Name of the PNG image that contains the color coded pathymetric data. The file current named mapserv.png was obtained using the following API: https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?request=getmap&service=wms&BBOX=-90,-180,90,180&format=image/png&height=600&width=1200&crs=EPSG:4326&layers=GEBCO_LATEST_SUB_ICE_TOPO&version=1.3.0 In lieu of providing command line arguments, you may alternatively edit the defaults in bath_config.json. NOTE: runs via: runfile('/BlinkyTape_Python/bathymetry_blink/bathymetry_blink.py', wdir='/BlinkyTape_Python/') (C) 2021 <NAME> (https://joeycodes.dev) MIT Licensed """ import optparse import json from blinkytape import BlinkyTape from time import sleep from PIL import Image import numpy as np import sys MAX_ERRORS = 3 num_errors = 0 # Obtain default parameters with open("./bathymetry_blink/bathy_config.json") as f: config = json.load(f) # Default Blinky Tape port on Raspberry Pi is /dev/ttyACM0 parser = optparse.OptionParser() parser.add_option("-p", "--port", dest="portname", help="serial port (ex: /dev/ttyACM0)", default=config["port"]) parser.add_option("-l", "--location", dest="location", help="Location of the center of the LED strip (ex: 70,-110)", default=config["location"]) parser.add_option("-u", "--update-rate", dest="update_rate", help="How often to update elevation profile (mins) (ex: 5)", default=config["update_rate"]) parser.add_option("-d", "--delta-latitude", dest="delta_latitude", help="Change in latitude during update (ex: 5)", default=config["delta_latitude"]) parser.add_option("-n", "--num-leds", dest="num_leds", help="Number of LEDs in strip (ex: 60)", default=config["num_leds"]) parser.add_option("-i", "--image", dest="image_name", help="Name of the map/bathymetry image (ex: ./mapserv.png)", default=config["image"]) (options, args) = parser.parse_args() if args: print("Unknown parameters: " + args) # grab the values provided by user (or defaults) port = options.portname loc = options.location rate = options.update_rate delta = options.delta_latitude n_leds = options.num_leds i_name = options.image_name # Some visual indication that it works, for headless setups (green tape) bt = BlinkyTape(port, n_leds) bt.displayColor(0, 100, 0) bt.show() sleep(2) while True: try: # first, load image im = Image.open(i_name) # Can be many different formats. cols, rows = im.size a = np.asarray(im) # of shape (rows, cols, channels) # map loc latitude to 0-based index latitude_index = min(rows - 1, max(0, (int)(((loc[0] - -90) / (90 - -90)) * (rows - 0) + 0))) longitude_index = min(cols - 1, max(0, (int)(((loc[1] - -180) / (180 - -180)) * (cols - 0) + 0))) # update the location of the next row of elevation data to take loc[0] += delta loc[0] = ((loc[0] + 90) % 180) - 90 # wraps to next pole if overflow print("Lat index: " + str(latitude_index)) print("Lon index: " + str(longitude_index)) print("Next latitude: " + str(loc[0])) # grab the applicable pixel indices indices = [(int)(x*(cols/n_leds)) for x in range(n_leds)] # sample that row of pixel data output_pixels = np.take(a[latitude_index], indices, axis=0) # rotate the row to center around the specified longitude output_pixels = np.roll(output_pixels, longitude_index, axis=0) # send all pixel data to bt for pixel in output_pixels: print("Sending r: {}, g: {}, b: {}".format(*pixel)) bt.sendPixel(*pixel) # finally, show the image bt.show() # delete variables for memory management del a del im # Tape resets to stored pattern after a few seconds of inactivity sleep(rate * 60) # Wait specified number of minutes # sleep(10) # Wait specified number of minutes except KeyboardInterrupt: print("Keyboard interrupt, ending program.") sys.exit() except RuntimeError as e: print("Encountered runtime error: " + e.args[0]) # flush any incomplete data bt.show() num_errors += 1 if num_errors > MAX_ERRORS: sys.exit("Error count exceeds that allowed.")
[ "PIL.Image.open", "numpy.roll", "numpy.asarray", "optparse.OptionParser", "time.sleep", "numpy.take", "blinkytape.BlinkyTape", "sys.exit", "json.load" ]
[((1945, 1968), 'optparse.OptionParser', 'optparse.OptionParser', ([], {}), '()\n', (1966, 1968), False, 'import optparse\n'), ((3304, 3328), 'blinkytape.BlinkyTape', 'BlinkyTape', (['port', 'n_leds'], {}), '(port, n_leds)\n', (3314, 3328), False, 'from blinkytape import BlinkyTape\n'), ((3366, 3374), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (3371, 3374), False, 'from time import sleep\n'), ((1863, 1875), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1872, 1875), False, 'import json\n'), ((3438, 3456), 'PIL.Image.open', 'Image.open', (['i_name'], {}), '(i_name)\n', (3448, 3456), False, 'from PIL import Image\n'), ((3532, 3546), 'numpy.asarray', 'np.asarray', (['im'], {}), '(im)\n', (3542, 3546), True, 'import numpy as np\n'), ((4371, 4414), 'numpy.take', 'np.take', (['a[latitude_index]', 'indices'], {'axis': '(0)'}), '(a[latitude_index], indices, axis=0)\n', (4378, 4414), True, 'import numpy as np\n'), ((4514, 4561), 'numpy.roll', 'np.roll', (['output_pixels', 'longitude_index'], {'axis': '(0)'}), '(output_pixels, longitude_index, axis=0)\n', (4521, 4561), True, 'import numpy as np\n'), ((4971, 4987), 'time.sleep', 'sleep', (['(rate * 60)'], {}), '(rate * 60)\n', (4976, 4987), False, 'from time import sleep\n'), ((5172, 5182), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5180, 5182), False, 'import sys\n'), ((5423, 5468), 'sys.exit', 'sys.exit', (['"""Error count exceeds that allowed."""'], {}), "('Error count exceeds that allowed.')\n", (5431, 5468), False, 'import sys\n')]
# pylint: disable=protected-access import os import re import pytest from dagster import file_relative_path from dagster.core.errors import DagsterInstanceMigrationRequired from dagster.core.instance import DagsterInstance, InstanceRef from dagster.utils.test import restore_directory # test that we can load runs and events from an old instance def test_0_6_4(): test_dir = file_relative_path(__file__, 'snapshot_0_6_4') with restore_directory(test_dir): instance = DagsterInstance.from_ref(InstanceRef.from_dir(test_dir)) runs = instance.get_runs() with pytest.raises( DagsterInstanceMigrationRequired, match=re.escape( 'Instance is out of date and must be migrated (SqliteEventLogStorage for run ' 'c7a6c4d7-6c88-46d0-8baa-d4937c3cefe5). Database is at revision None, head is ' '567bc23fd1ac. Please run `dagster instance migrate`.' ), ): for run in runs: instance.all_logs(run.run_id) def test_0_6_6_sqlite_exc(): test_dir = file_relative_path(__file__, 'snapshot_0_6_6/sqlite') with restore_directory(test_dir): instance = DagsterInstance.from_ref(InstanceRef.from_dir(test_dir)) runs = instance.get_runs() # Note that this is a deliberate choice -- old runs are simply invisible, and their # presence won't raise DagsterInstanceMigrationRequired. This is a reasonable choice since # the runs.db has moved and otherwise we would have to do a check for the existence of an # old runs.db every time we accessed the runs. Instead, we'll do this only in the upgrade # method. assert len(runs) == 0 run_ids = instance._event_storage.get_all_run_ids() assert run_ids == ['89296095-892d-4a15-aa0d-9018d1580945'] with pytest.raises( DagsterInstanceMigrationRequired, match=re.escape( 'Instance is out of date and must be migrated (SqliteEventLogStorage for run ' '89296095-892d-4a15-aa0d-9018d1580945). Database is at revision None, head is ' '567bc23fd1ac. Please run `dagster instance migrate`.' ), ): instance._event_storage.get_logs_for_run('89296095-892d-4a15-aa0d-9018d1580945') def test_0_6_6_sqlite_migrate(): test_dir = file_relative_path(__file__, 'snapshot_0_6_6/sqlite') assert os.path.exists(file_relative_path(__file__, 'snapshot_0_6_6/sqlite/runs.db')) assert not os.path.exists(file_relative_path(__file__, 'snapshot_0_6_6/sqlite/history/runs.db')) with restore_directory(test_dir): instance = DagsterInstance.from_ref(InstanceRef.from_dir(test_dir)) instance.upgrade() runs = instance.get_runs() assert len(runs) == 1 run_ids = instance._event_storage.get_all_run_ids() assert run_ids == ['89296095-892d-4a15-aa0d-9018d1580945'] instance._event_storage.get_logs_for_run('89296095-892d-4a15-aa0d-9018d1580945') assert not os.path.exists(file_relative_path(__file__, 'snapshot_0_6_6/sqlite/runs.db')) assert os.path.exists(file_relative_path(__file__, 'snapshot_0_6_6/sqlite/history/runs.db'))
[ "dagster.file_relative_path", "dagster.core.instance.InstanceRef.from_dir", "dagster.utils.test.restore_directory", "re.escape" ]
[((383, 429), 'dagster.file_relative_path', 'file_relative_path', (['__file__', '"""snapshot_0_6_4"""'], {}), "(__file__, 'snapshot_0_6_4')\n", (401, 429), False, 'from dagster import file_relative_path\n'), ((1092, 1145), 'dagster.file_relative_path', 'file_relative_path', (['__file__', '"""snapshot_0_6_6/sqlite"""'], {}), "(__file__, 'snapshot_0_6_6/sqlite')\n", (1110, 1145), False, 'from dagster import file_relative_path\n'), ((2393, 2446), 'dagster.file_relative_path', 'file_relative_path', (['__file__', '"""snapshot_0_6_6/sqlite"""'], {}), "(__file__, 'snapshot_0_6_6/sqlite')\n", (2411, 2446), False, 'from dagster import file_relative_path\n'), ((439, 466), 'dagster.utils.test.restore_directory', 'restore_directory', (['test_dir'], {}), '(test_dir)\n', (456, 466), False, 'from dagster.utils.test import restore_directory\n'), ((1155, 1182), 'dagster.utils.test.restore_directory', 'restore_directory', (['test_dir'], {}), '(test_dir)\n', (1172, 1182), False, 'from dagster.utils.test import restore_directory\n'), ((2473, 2534), 'dagster.file_relative_path', 'file_relative_path', (['__file__', '"""snapshot_0_6_6/sqlite/runs.db"""'], {}), "(__file__, 'snapshot_0_6_6/sqlite/runs.db')\n", (2491, 2534), False, 'from dagster import file_relative_path\n'), ((2647, 2674), 'dagster.utils.test.restore_directory', 'restore_directory', (['test_dir'], {}), '(test_dir)\n', (2664, 2674), False, 'from dagster.utils.test import restore_directory\n'), ((512, 542), 'dagster.core.instance.InstanceRef.from_dir', 'InstanceRef.from_dir', (['test_dir'], {}), '(test_dir)\n', (532, 542), False, 'from dagster.core.instance import DagsterInstance, InstanceRef\n'), ((1228, 1258), 'dagster.core.instance.InstanceRef.from_dir', 'InstanceRef.from_dir', (['test_dir'], {}), '(test_dir)\n', (1248, 1258), False, 'from dagster.core.instance import DagsterInstance, InstanceRef\n'), ((2566, 2635), 'dagster.file_relative_path', 'file_relative_path', (['__file__', '"""snapshot_0_6_6/sqlite/history/runs.db"""'], {}), "(__file__, 'snapshot_0_6_6/sqlite/history/runs.db')\n", (2584, 2635), False, 'from dagster import file_relative_path\n'), ((2720, 2750), 'dagster.core.instance.InstanceRef.from_dir', 'InstanceRef.from_dir', (['test_dir'], {}), '(test_dir)\n', (2740, 2750), False, 'from dagster.core.instance import DagsterInstance, InstanceRef\n'), ((3191, 3260), 'dagster.file_relative_path', 'file_relative_path', (['__file__', '"""snapshot_0_6_6/sqlite/history/runs.db"""'], {}), "(__file__, 'snapshot_0_6_6/sqlite/history/runs.db')\n", (3209, 3260), False, 'from dagster import file_relative_path\n'), ((3098, 3159), 'dagster.file_relative_path', 'file_relative_path', (['__file__', '"""snapshot_0_6_6/sqlite/runs.db"""'], {}), "(__file__, 'snapshot_0_6_6/sqlite/runs.db')\n", (3116, 3159), False, 'from dagster import file_relative_path\n'), ((672, 900), 're.escape', 're.escape', (['"""Instance is out of date and must be migrated (SqliteEventLogStorage for run c7a6c4d7-6c88-46d0-8baa-d4937c3cefe5). Database is at revision None, head is 567bc23fd1ac. Please run `dagster instance migrate`."""'], {}), "(\n 'Instance is out of date and must be migrated (SqliteEventLogStorage for run c7a6c4d7-6c88-46d0-8baa-d4937c3cefe5). Database is at revision None, head is 567bc23fd1ac. Please run `dagster instance migrate`.'\n )\n", (681, 900), False, 'import re\n'), ((1951, 2179), 're.escape', 're.escape', (['"""Instance is out of date and must be migrated (SqliteEventLogStorage for run 89296095-892d-4a15-aa0d-9018d1580945). Database is at revision None, head is 567bc23fd1ac. Please run `dagster instance migrate`."""'], {}), "(\n 'Instance is out of date and must be migrated (SqliteEventLogStorage for run 89296095-892d-4a15-aa0d-9018d1580945). Database is at revision None, head is 567bc23fd1ac. Please run `dagster instance migrate`.'\n )\n", (1960, 2179), False, 'import re\n')]
import matplotlib.pyplot as plt import pandas as pd def group_by_category(df): grouped = df.groupby(['CATEGORY']).size().to_frame('Crimes') labels = ['Trespassing', 'Vehicle theft', 'General Theft', 'Damage to Property', 'Robbery', 'Homicide'] p = grouped.plot.pie(y='Crimes', labels=labels, autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Category') p.get_legend().remove() plt.savefig('../charts/category.png') def group_by_time_of_day(df): grouped = df.groupby(['TIME_OF_DAY']).size().to_frame('Crimes') p = grouped.plot.pie(y='Crimes', labels=['Day', 'Evening', 'Night'], autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Time of Day') p.get_legend().remove() plt.savefig('../charts/time_of_day.png') def group_by_day_of_the_week(df): grouped = df.groupby(['DAY_OF_THE_WEEK']).size().to_frame('Crimes') labels = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] p = grouped.plot.pie(y='Crimes', labels=labels, autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Day of The Week') p.get_legend().remove() plt.savefig('../charts/day_of_the_week.png') def group_by_month(df): grouped = df.groupby(['MONTH']).size().to_frame('Size') grouped['Percentage'] = 100 * grouped['Size'] / len(df) grouped = grouped.drop(columns='Size') p = grouped.plot.bar() p.set_title('Crimes Percentage Grouped By Month') p.set_ylabel('Percentage of Crimes') p.set_xlabel('Month') p.get_legend().remove() plt.savefig('../charts/month.png') def group_by_year(df): grouped = df.groupby(['YEAR']).size().to_frame('Crimes') p = grouped.plot.pie(y='Crimes', autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Year') p.get_legend().remove() plt.savefig('../charts/year.png') def group_by_territory(df): grouped = df.groupby(['PDQ']).size().to_frame('Size') grouped['Percentage'] = 100 * grouped['Size'] / len(df) grouped = grouped.drop(columns='Size') grouped.index = grouped.index.astype(int) p = grouped.plot.bar() p.set_title('Crimes Percentage Grouped By Territory') p.set_ylabel('Percentage of Crimes') p.set_xlabel('Territory Number') p.get_legend().remove() plt.savefig('../charts/territory.png') if __name__ == '__main__': df = pd.read_csv('../data/crimes_dataset_processed_incomplete.csv') group_by_territory(df) group_by_year(df) group_by_month(df) group_by_time_of_day(df) group_by_day_of_the_week(df) group_by_category(df)
[ "matplotlib.pyplot.savefig", "pandas.read_csv" ]
[((428, 465), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""../charts/category.png"""'], {}), "('../charts/category.png')\n", (439, 465), True, 'import matplotlib.pyplot as plt\n'), ((749, 789), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""../charts/time_of_day.png"""'], {}), "('../charts/time_of_day.png')\n", (760, 789), True, 'import matplotlib.pyplot as plt\n'), ((1156, 1200), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""../charts/day_of_the_week.png"""'], {}), "('../charts/day_of_the_week.png')\n", (1167, 1200), True, 'import matplotlib.pyplot as plt\n'), ((1569, 1603), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""../charts/month.png"""'], {}), "('../charts/month.png')\n", (1580, 1603), True, 'import matplotlib.pyplot as plt\n'), ((1830, 1863), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""../charts/year.png"""'], {}), "('../charts/year.png')\n", (1841, 1863), True, 'import matplotlib.pyplot as plt\n'), ((2295, 2333), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""../charts/territory.png"""'], {}), "('../charts/territory.png')\n", (2306, 2333), True, 'import matplotlib.pyplot as plt\n'), ((2372, 2434), 'pandas.read_csv', 'pd.read_csv', (['"""../data/crimes_dataset_processed_incomplete.csv"""'], {}), "('../data/crimes_dataset_processed_incomplete.csv')\n", (2383, 2434), True, 'import pandas as pd\n')]
# Unit tests import unittest def run_test_instance(unittestinstance, profile, committeesize, tests): import rules_approval # all rules used? for rule in rules_approval.MWRULES: unittestinstance.assertTrue(rule in tests.keys()) for rule in tests.keys(): output = rules_approval.compute_rule(rule, profile, committeesize, resolute=False) unittestinstance.assertEqual( output, tests[rule], msg=rules_approval.MWRULES[rule] + " failed") output = rules_approval.compute_rule( rule, profile, committeesize, resolute=True) unittestinstance.assertEqual( len(output), 1, msg=rules_approval.MWRULES[rule] + " failed with resolute=True") unittestinstance.assertTrue( output[0] in tests[rule], msg=rules_approval.MWRULES[rule] + " failed with resolute=True") class TestApprovalMultiwinner(unittest.TestCase): def test_createprofiles(self): from preferences import Profile from preferences import DichotomousPreferences num_cand = 7 prof = Profile(num_cand) self.assertEqual(prof.add_preferences( DichotomousPreferences([0, 4, 5])), None) with self.assertRaises(Exception): prof.add_preferences(DichotomousPreferences([num_cand])) with self.assertRaises(Exception): prof.add_preferences(DichotomousPreferences([-1])) self.assertEqual(prof.add_preferences([0, 4, 5]), None) with self.assertRaises(Exception): prof.add_preferences([0, 4, 5, "1"]) with self.assertRaises(Exception): prof.add_preferences(["1", 0, 4, 5]) p1 = DichotomousPreferences([0, 4, 5]) p2 = DichotomousPreferences([1, 2]) self.assertEqual(prof.add_preferences([p1, p2]), None) self.assertTrue(prof.has_unit_weights()) prof.add_preferences(DichotomousPreferences([0, 4, 5], 2.4)) self.assertFalse(prof.has_unit_weights()) self.assertEqual(prof.totalweight(), 6.4) def test_mwrules__toofewcandidates(self): from preferences import Profile import rules_approval profile = Profile(5) committeesize = 4 preflist = [[0, 1, 2], [1], [1, 2], [0]] profile.add_preferences(preflist) for rule in rules_approval.MWRULES.keys(): with self.assertRaises(Exception): rules_approval.compute_rule(rule, profile, committeesize) with self.assertRaises(Exception): rules_approval.compute_rule(rule, profile, committeesize, resolute=True) def test_mwrules_weightsconsidered(self): from preferences import Profile from preferences import DichotomousPreferences import rules_approval self.longMessage = True profile = Profile(3) profile.add_preferences(DichotomousPreferences([0])) profile.add_preferences(DichotomousPreferences([0])) profile.add_preferences(DichotomousPreferences([1], 5)) profile.add_preferences(DichotomousPreferences([0])) committeesize = 1 for rule in rules_approval.MWRULES.keys(): if "monroe" in rule or "rule-x" in rule: # Monroe and rule x only work with unit weights: continue result = rules_approval.compute_rule(rule, profile, committeesize) self.assertTrue([1] in result, msg=rule + " failed"+str(result)) def test_mwrules_correct_simple(self): from preferences import Profile import rules_approval self.longMessage = True profile = Profile(4) profile.add_preferences([[0], [1], [2], [3]]) committeesize = 2 for rule in rules_approval.MWRULES.keys(): if rule == "greedy-monroe": # always returns one committee continue self.assertEqual(len(rules_approval.compute_rule(rule, profile, committeesize)), 6, msg=rule + " failed") for rule in rules_approval.MWRULES.keys(): self.assertEqual(len(rules_approval.compute_rule(rule, profile, committeesize, resolute=True)), 1, msg=rule + " failed with resolute=True") def test_monroe_indivisible(self): from preferences import Profile import rules_approval self.longMessage = True profile = Profile(4) profile.add_preferences([[0], [0], [0], [1, 2], [1, 2], [1], [3]]) committeesize = 3 for ilp in [True, False]: # max Monroe score is 6 (even for committee [0, 1, 3]) self.assertEqual( rules_approval.compute_monroe(profile, committeesize, ilp=ilp, resolute=False), [[0, 1, 2], [0, 1, 3], [0, 2, 3]]) # this test shows that tiebreaking is not (yet) # implemented for opt-Phragmen def test_optphrag_notiebreaking(self): from preferences import Profile from rules_approval import compute_rule self.longMessage = True profile = Profile(6) profile.add_preferences([[0], [0], [1, 3], [1, 3], [1, 4], [2, 4], [2, 5], [2, 5]]) committeesize = 3 self.assertEqual( len(compute_rule("optphrag", profile, committeesize, resolute=False)), 12) def test_mwrules_correct_advanced_1(self): from preferences import Profile self.longMessage = True committeesize = 4 profile = Profile(6) preflist = [[0, 4, 5], [0], [1, 4, 5], [1], [2, 4, 5], [2], [3, 4, 5], [3]] profile.add_preferences(preflist) tests1 = { "seqpav": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "av": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "sav": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 4, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "pav-ilp": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "pav-noilp": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "revseqpav": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "minimaxav-noilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 4, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "minimaxav-ilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 4, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "phrag": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "optphrag": [[0, 1, 2, 3]], "cc-ilp": [[0, 1, 2, 3]], "cc-noilp": [[0, 1, 2, 3]], "seqcc": [[0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 2, 3, 4], [0, 2, 3, 5], [1, 2, 3, 4], [1, 2, 3, 5]], "revseqcc": [[0, 1, 2, 3]], "monroe-ilp": [[0, 1, 2, 3]], "monroe-noilp": [[0, 1, 2, 3]], "greedy-monroe": [[0, 2, 3, 4]], "slav-ilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 2, 3, 4], [0, 2, 3, 5], [1, 2, 3, 4], [1, 2, 3, 5]], "slav-noilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 2, 3, 4], [0, 2, 3, 5], [1, 2, 3, 4], [1, 2, 3, 5]], "seqslav": [[0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 2, 3, 4], [0, 2, 3, 5], [1, 2, 3, 4], [1, 2, 3, 5]], "rule-x": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], "phragmen-enestroem": [[0, 1, 4, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]], } run_test_instance(self, profile, committeesize, tests1) # and now with reversed preflist preflist.reverse() for p in preflist: p.reverse() profile = Profile(6) profile.add_preferences(preflist) run_test_instance(self, profile, committeesize, tests1) def test_mwrules_correct_advanced_2(self): from preferences import Profile self.longMessage = True # and another profile profile = Profile(5) committeesize = 3 preflist = [[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1], [3, 4], [3, 4], [3]] profile.add_preferences(preflist) tests2 = { "seqpav": [[0, 1, 3]], "av": [[0, 1, 2]], "sav": [[0, 1, 3]], "pav-ilp": [[0, 1, 3]], "pav-noilp": [[0, 1, 3]], "revseqpav": [[0, 1, 3]], "minimaxav-noilp": [[0, 1, 3], [0, 2, 3], [1, 2, 3]], "minimaxav-ilp": [[0, 1, 3], [0, 2, 3], [1, 2, 3]], "phrag": [[0, 1, 3]], "optphrag": [[0, 1, 3], [0, 2, 3], [1, 2, 3]], "cc-ilp": [[0, 1, 3], [0, 2, 3], [0, 3, 4], [1, 2, 3], [1, 3, 4]], "cc-noilp": [[0, 1, 3], [0, 2, 3], [0, 3, 4], [1, 2, 3], [1, 3, 4]], "seqcc": [[0, 1, 3], [0, 2, 3], [0, 3, 4], [1, 2, 3], [1, 3, 4]], "revseqcc": [[0, 1, 3], [0, 2, 3], [0, 3, 4], [1, 2, 3], [1, 3, 4]], "monroe-ilp": [[0, 1, 3], [0, 2, 3], [1, 2, 3]], "monroe-noilp": [[0, 1, 3], [0, 2, 3], [1, 2, 3]], "greedy-monroe": [[0, 1, 3]], "seqslav": [[0, 1, 3]], "slav-ilp": [[0, 1, 3]], "slav-noilp": [[0, 1, 3]], "rule-x": [[0, 1, 3]], "phragmen-enestroem": [[0, 1, 3]], } run_test_instance(self, profile, committeesize, tests2) def test_mwrules_correct_advanced_3(self): from preferences import Profile self.longMessage = True # and a third profile profile = Profile(6) committeesize = 4 preflist = [[0, 3, 4, 5], [1, 2], [0, 2, 5], [2], [0, 1, 2, 3, 4], [0, 3, 4], [0, 2, 4], [0, 1]] profile.add_preferences(preflist) tests3 = { "seqpav": [[0, 1, 2, 4]], "av": [[0, 1, 2, 4], [0, 2, 3, 4]], "sav": [[0, 1, 2, 4]], "pav-ilp": [[0, 1, 2, 4]], "pav-noilp": [[0, 1, 2, 4]], "revseqpav": [[0, 1, 2, 4]], "minimaxav-noilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5]], "minimaxav-ilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5]], "phrag": [[0, 1, 2, 4]], "optphrag": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5]], "cc-ilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5]], "cc-noilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5]], "seqcc": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5]], "revseqcc": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5]], "monroe-ilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5]], "monroe-noilp": [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5]], "greedy-monroe": [[0, 1, 2, 3]], "seqslav": [[0, 1, 2, 4]], "slav-ilp": [[0, 1, 2, 4]], "slav-noilp": [[0, 1, 2, 4]], "rule-x": [[0, 1, 2, 4]], "phragmen-enestroem": [[0, 1, 2, 4]], } run_test_instance(self, profile, committeesize, tests3) def test_monroescore(self): from preferences import Profile from score_functions import monroescore_flowbased, monroescore_matching self.longMessage = True # and a third profile profile = Profile(6) preflist = [[0, 1], [1], [1, 3], [4], [2], [1, 5, 3]] profile.add_preferences(preflist) self.assertEqual(monroescore_flowbased(profile, [1, 3, 2]), 5) self.assertEqual(monroescore_matching(profile, [1, 3, 2]), 5) self.assertEqual(monroescore_flowbased(profile, [2, 1, 5]), 4) self.assertEqual(monroescore_matching(profile, [2, 1, 5]), 4) self.assertEqual(monroescore_flowbased(profile, [2, 4, 5]), 3) self.assertEqual(monroescore_matching(profile, [2, 5, 4]), 3) if __name__ == '__main__': unittest.main()
[ "rules_approval.compute_rule", "score_functions.monroescore_matching", "preferences.Profile", "rules_approval.compute_monroe", "rules_approval.MWRULES.keys", "preferences.DichotomousPreferences", "score_functions.monroescore_flowbased", "unittest.main" ]
[((15333, 15348), 'unittest.main', 'unittest.main', ([], {}), '()\n', (15346, 15348), False, 'import unittest\n'), ((301, 374), 'rules_approval.compute_rule', 'rules_approval.compute_rule', (['rule', 'profile', 'committeesize'], {'resolute': '(False)'}), '(rule, profile, committeesize, resolute=False)\n', (328, 374), False, 'import rules_approval\n'), ((599, 671), 'rules_approval.compute_rule', 'rules_approval.compute_rule', (['rule', 'profile', 'committeesize'], {'resolute': '(True)'}), '(rule, profile, committeesize, resolute=True)\n', (626, 671), False, 'import rules_approval\n'), ((1198, 1215), 'preferences.Profile', 'Profile', (['num_cand'], {}), '(num_cand)\n', (1205, 1215), False, 'from preferences import Profile\n'), ((1808, 1841), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[0, 4, 5]'], {}), '([0, 4, 5])\n', (1830, 1841), False, 'from preferences import DichotomousPreferences\n'), ((1855, 1885), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[1, 2]'], {}), '([1, 2])\n', (1877, 1885), False, 'from preferences import DichotomousPreferences\n'), ((2302, 2312), 'preferences.Profile', 'Profile', (['(5)'], {}), '(5)\n', (2309, 2312), False, 'from preferences import Profile\n'), ((2451, 2480), 'rules_approval.MWRULES.keys', 'rules_approval.MWRULES.keys', ([], {}), '()\n', (2478, 2480), False, 'import rules_approval\n'), ((3007, 3017), 'preferences.Profile', 'Profile', (['(3)'], {}), '(3)\n', (3014, 3017), False, 'from preferences import Profile\n'), ((3312, 3341), 'rules_approval.MWRULES.keys', 'rules_approval.MWRULES.keys', ([], {}), '()\n', (3339, 3341), False, 'import rules_approval\n'), ((3836, 3846), 'preferences.Profile', 'Profile', (['(4)'], {}), '(4)\n', (3843, 3846), False, 'from preferences import Profile\n'), ((3948, 3977), 'rules_approval.MWRULES.keys', 'rules_approval.MWRULES.keys', ([], {}), '()\n', (3975, 3977), False, 'import rules_approval\n'), ((4306, 4335), 'rules_approval.MWRULES.keys', 'rules_approval.MWRULES.keys', ([], {}), '()\n', (4333, 4335), False, 'import rules_approval\n'), ((4802, 4812), 'preferences.Profile', 'Profile', (['(4)'], {}), '(4)\n', (4809, 4812), False, 'from preferences import Profile\n'), ((5510, 5520), 'preferences.Profile', 'Profile', (['(6)'], {}), '(6)\n', (5517, 5520), False, 'from preferences import Profile\n'), ((6005, 6015), 'preferences.Profile', 'Profile', (['(6)'], {}), '(6)\n', (6012, 6015), False, 'from preferences import Profile\n'), ((9721, 9731), 'preferences.Profile', 'Profile', (['(6)'], {}), '(6)\n', (9728, 9731), False, 'from preferences import Profile\n'), ((10009, 10019), 'preferences.Profile', 'Profile', (['(5)'], {}), '(5)\n', (10016, 10019), False, 'from preferences import Profile\n'), ((11684, 11694), 'preferences.Profile', 'Profile', (['(6)'], {}), '(6)\n', (11691, 11694), False, 'from preferences import Profile\n'), ((14761, 14771), 'preferences.Profile', 'Profile', (['(6)'], {}), '(6)\n', (14768, 14771), False, 'from preferences import Profile\n'), ((2027, 2065), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[0, 4, 5]', '(2.4)'], {}), '([0, 4, 5], 2.4)\n', (2049, 2065), False, 'from preferences import DichotomousPreferences\n'), ((3050, 3077), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[0]'], {}), '([0])\n', (3072, 3077), False, 'from preferences import DichotomousPreferences\n'), ((3111, 3138), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[0]'], {}), '([0])\n', (3133, 3138), False, 'from preferences import DichotomousPreferences\n'), ((3172, 3202), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[1]', '(5)'], {}), '([1], 5)\n', (3194, 3202), False, 'from preferences import DichotomousPreferences\n'), ((3236, 3263), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[0]'], {}), '([0])\n', (3258, 3263), False, 'from preferences import DichotomousPreferences\n'), ((3507, 3564), 'rules_approval.compute_rule', 'rules_approval.compute_rule', (['rule', 'profile', 'committeesize'], {}), '(rule, profile, committeesize)\n', (3534, 3564), False, 'import rules_approval\n'), ((14902, 14943), 'score_functions.monroescore_flowbased', 'monroescore_flowbased', (['profile', '[1, 3, 2]'], {}), '(profile, [1, 3, 2])\n', (14923, 14943), False, 'from score_functions import monroescore_flowbased, monroescore_matching\n'), ((14973, 15013), 'score_functions.monroescore_matching', 'monroescore_matching', (['profile', '[1, 3, 2]'], {}), '(profile, [1, 3, 2])\n', (14993, 15013), False, 'from score_functions import monroescore_flowbased, monroescore_matching\n'), ((15043, 15084), 'score_functions.monroescore_flowbased', 'monroescore_flowbased', (['profile', '[2, 1, 5]'], {}), '(profile, [2, 1, 5])\n', (15064, 15084), False, 'from score_functions import monroescore_flowbased, monroescore_matching\n'), ((15114, 15154), 'score_functions.monroescore_matching', 'monroescore_matching', (['profile', '[2, 1, 5]'], {}), '(profile, [2, 1, 5])\n', (15134, 15154), False, 'from score_functions import monroescore_flowbased, monroescore_matching\n'), ((15184, 15225), 'score_functions.monroescore_flowbased', 'monroescore_flowbased', (['profile', '[2, 4, 5]'], {}), '(profile, [2, 4, 5])\n', (15205, 15225), False, 'from score_functions import monroescore_flowbased, monroescore_matching\n'), ((15255, 15295), 'score_functions.monroescore_matching', 'monroescore_matching', (['profile', '[2, 5, 4]'], {}), '(profile, [2, 5, 4])\n', (15275, 15295), False, 'from score_functions import monroescore_flowbased, monroescore_matching\n'), ((1275, 1308), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[0, 4, 5]'], {}), '([0, 4, 5])\n', (1297, 1308), False, 'from preferences import DichotomousPreferences\n'), ((1405, 1439), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[num_cand]'], {}), '([num_cand])\n', (1427, 1439), False, 'from preferences import DichotomousPreferences\n'), ((1517, 1545), 'preferences.DichotomousPreferences', 'DichotomousPreferences', (['[-1]'], {}), '([-1])\n', (1539, 1545), False, 'from preferences import DichotomousPreferences\n'), ((2545, 2602), 'rules_approval.compute_rule', 'rules_approval.compute_rule', (['rule', 'profile', 'committeesize'], {}), '(rule, profile, committeesize)\n', (2572, 2602), False, 'import rules_approval\n'), ((2666, 2738), 'rules_approval.compute_rule', 'rules_approval.compute_rule', (['rule', 'profile', 'committeesize'], {'resolute': '(True)'}), '(rule, profile, committeesize, resolute=True)\n', (2693, 2738), False, 'import rules_approval\n'), ((5062, 5140), 'rules_approval.compute_monroe', 'rules_approval.compute_monroe', (['profile', 'committeesize'], {'ilp': 'ilp', 'resolute': '(False)'}), '(profile, committeesize, ilp=ilp, resolute=False)\n', (5091, 5140), False, 'import rules_approval\n'), ((5719, 5783), 'rules_approval.compute_rule', 'compute_rule', (['"""optphrag"""', 'profile', 'committeesize'], {'resolute': '(False)'}), "('optphrag', profile, committeesize, resolute=False)\n", (5731, 5783), False, 'from rules_approval import compute_rule\n'), ((4110, 4167), 'rules_approval.compute_rule', 'rules_approval.compute_rule', (['rule', 'profile', 'committeesize'], {}), '(rule, profile, committeesize)\n', (4137, 4167), False, 'import rules_approval\n'), ((4370, 4442), 'rules_approval.compute_rule', 'rules_approval.compute_rule', (['rule', 'profile', 'committeesize'], {'resolute': '(True)'}), '(rule, profile, committeesize, resolute=True)\n', (4397, 4442), False, 'import rules_approval\n')]
# -*- coding: utf-8 -*- # # Copyright (C) 2016, 2017 Red Hat, Inc. # Red Hat Author: <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Client for applications relying on OpenID Connect for authentication.""" from __future__ import print_function from copy import copy import json import logging from threading import Lock import time try: from StringIO import StringIO except ImportError: from io import StringIO import socket import os try: from urllib import urlencode except ImportError: from urllib.parse import urlencode from uuid import uuid4 as uuidgen import webbrowser from wsgiref import simple_server import requests import sys from openidc_client import release # The ports that we will try to use for our webserver WEB_PORTS = [12345, 23456] class OpenIDCClient(object): # Internal implementation of tokens: # Every app id has its own token cache # The token cache is a json serialized dict # This dict contains uuid: token pairs # Every "token" object is a json dict with the following keys: # idp: The URL of the idp that issued the token # sub: The subject that owns the token # access_token: Token value # token_type: Token type. Currently supported: "Bearer" # expires_at: Token expiration UTC time. NOTE: Even if the expires_at # indicates the token should still be valid, it may have been revoked by # the user! Also, even if it has expired, we might still be able to # refresh the token. # refresh_token: The token we can use to refresh the access token # scopes: A list of scopes that we had requested with the token def __init__(self, app_identifier, id_provider, id_provider_mapping, client_id, client_secret=None, use_post=False, useragent=None, cachedir=None, printfd=sys.stdout): """Client for interacting with web services relying on OpenID Connect. :param app_identifier: Identifier for storage of retrieved tokens :param id_provider: URL of the identity provider to get tokens from :param id_provider_mapping: Mapping with URLs to use for specific endpoints on the IdP. :kwarg use_post: Whether to use POST submission of client secrets rather than Authorization header :kwarg client_id: The Client Identifier used to request credentials :kwarg client_secret: The client "secret" that goes with the client_id. May be None if your IdP does not require you to use a secret. :kwarg useragent: Useragent string to use. If not provided, defaults to "python-openidc-client/VERSION" :kwarg cachedir: The directory in which to store the token caches. Will be put through expanduer. Default is ~/.openidc. If this does not exist and we are unable to create it, the OSError will be thrown. :kwargs printfd: The File object to print token instructions to. """ self.logger = logging.getLogger(__name__) self.debug = self.logger.debug self.app_id = app_identifier self.use_post = use_post self.idp = id_provider self.idp_mapping = id_provider_mapping self.client_id = client_id self.client_secret = client_secret self.useragent = useragent or 'python-openid-client/%s' % \ release.VERSION self.cachedir = os.path.expanduser(cachedir or '~/.openidc') self.last_returned_uuid = None self.problem_reported = False self.token_to_try = None self._retrieved_code = None # TODO: Make cache_lock a filesystem lock so we also lock across # multiple invocations self._cache_lock = Lock() with self._cache_lock: self.__refresh_cache() self._valid_cache = [] self._printfd = printfd def get_token(self, scopes, new_token=True): """Function to retrieve tokens with specific scopes. This function will block until a token is retrieved if requested. It is always safe to call this though, since if we already have a token with the current app_identifier that has the required scopes, we will return it. This function will return a bearer token or None. Note that the bearer token might have been revoked by the user or expired. In that case, you will want to call report_token_issue() to try to renew the token or delete the token. :kwarg scopes: A list of scopes required for the current client. :kwarg new_token: If True, we will actively request the user to get a new token with the current scopeset if we do not already have on. :rtype: string or None :returns: String bearer token if possible or None """ if not isinstance(scopes, list): raise ValueError('Scopes must be a list') token = self._get_token_with_scopes(scopes) if token: # If we had a valid token, use that self.last_returned_uuid = token[0] self.problem_reported = False return token[1]['access_token'] elif not new_token: return None # We did not have a valid token, now comes the hard part... uuid = self._get_new_token(scopes) if uuid: self.last_returned_uuid = uuid self.problem_reported = False return self._cache[uuid]['access_token'] def report_token_issue(self): """Report an error with the last token that was returned. This will attempt to renew the token that was last returned. If that worked, we will return the new access token. If it did not work, we will return None and remove this token from the cache. If you get an indication from your application that the token you sent was invalid, you should call it. You should explicitly NOT call this function if the token was valid but your request failed due to a server error or because the account or token was lacking specific permissions. """ if not self.last_returned_uuid: raise Exception('Cannot report issue before requesting token') if self.problem_reported: # We were reported an issue before. Let's just remove this token. self._delete_token(self.last_returned_uuid) return None refresh_result = self._refresh_token(self.last_returned_uuid) if not refresh_result: self._delete_token(self.last_returned_uuid) return None else: self.problem_reported = True return self._cache[self.last_returned_uuid]['access_token'] def send_request(self, *args, **kwargs): """Make an python-requests POST request. Allarguments and keyword arguments are like the arguments to requests, except for `scopes`, `new_token` and `auto_refresh` keyword arguments. `scopes` is required. :kwarg scopes: Scopes required for this call. If a token is not present with this token, a new one will be requested unless nonblocking is True. :kwarg new_token: If True, we will actively request the user to get a new token with the current scopeset if we do not already have on. :kwarg auto_refresh: If False, will not try to automatically report token issues on 401. This helps with broken apps that may send a 401 return code in incorrect cases. :kwargs http_method: The HTTP method to use, defaults to POST.. """ ckwargs = copy(kwargs) scopes = ckwargs.pop('scopes') new_token = ckwargs.pop('new_token', True) auto_refresh = ckwargs.pop('auto_refresh', True) method = ckwargs.pop('http_method', 'POST') is_retry = False if self.token_to_try: is_retry = True token = self.token_to_try self.token_to_try = None else: token = self.get_token(scopes, new_token=new_token) if not token: return None if self.use_post: if 'json' in ckwargs: raise ValueError('Cannot provide json in a post call') if method not in ['POST']: raise ValueError('Cannot use POST tokens in %s method' % method) if 'data' not in ckwargs: ckwargs['data'] = {} ckwargs['data']['access_token'] = token else: if 'headers' not in ckwargs: ckwargs['headers'] = {} ckwargs['headers']['Authorization'] = 'Bearer %s' % token resp = requests.request(method, *args, **ckwargs) if resp.status_code == 401 and not is_retry: if not auto_refresh: return resp self.token_to_try = self.report_token_issue() if not self.token_to_try: return resp return self.send_request(*args, **kwargs) elif resp.status_code == 401: # We got a 401 and this is a retry. Report error self.report_token_issue() return resp else: return resp @property def _cachefile(self): """Property to get the cache file name for the current client. This assures that whenever this file is touched, the cache lock is held """ assert self._cache_lock.locked() return os.path.join(self.cachedir, 'oidc_%s.json' % self.app_id) def __refresh_cache(self): """Refreshes the self._cache from the cache on disk. Requires cache_lock to be held by caller.""" assert self._cache_lock.locked() self.debug('Refreshing cache') if not os.path.isdir(self.cachedir): self.debug('Creating directory') os.makedirs(self.cachedir) if not os.path.exists(self._cachefile): self.debug('Creating file') with open(self._cachefile, 'w') as f: f.write(json.dumps({})) with open(self._cachefile, 'r') as f: self._cache = json.loads(f.read()) self.debug('Loaded %i tokens', len(self._cache)) def _refresh_cache(self): """Refreshes the self._cache from the cache on disk. cache_lock may not be held by anyone.""" with self._cache_lock: self.__refresh_cache() def __write_cache(self): """Wirtes self._cache to cache on disk. Requires cache_lock to be held by caller.""" assert self._cache_lock.locked() self.debug('Writing cache with %i tokens', len(self._cache)) with open(self._cachefile, 'w') as f: f.write(json.dumps(self._cache)) def _add_token(self, token): """Adds a token to the cache and writes cache to disk. cache_lock may not be held by anyone. :param token: Dict of the token to be added to the cache """ uuid = uuidgen().hex self.debug('Adding token %s to cache', uuid) with self._cache_lock: self.__refresh_cache() self._cache[uuid] = token self.__write_cache() return uuid def _update_token(self, uuid, toupdate): """Updates a token in the cache. cache_lock may not be held by anyone. :param token: UUID of the token to be updated :param toupdate: Dict indicating which fields need to be updated """ self.debug('Updating token %s in cache, fields %s', uuid, toupdate.keys()) with self._cache_lock: self.__refresh_cache() if uuid not in self._cache: return None self._cache[uuid].update(toupdate) self.__write_cache() return uuid def _delete_token(self, uuid): """Removes a token from the cache and writes cache to disk. cache_lock may not be held by anyone. :param uuid: UUID of the token to be removed from cache """ self.debug('Removing token %s from cache', uuid) with self._cache_lock: self.__refresh_cache() if uuid in self._cache: self.debug('Removing token') del self._cache[uuid] self.__write_cache() else: self.debug('Token was already gone') def _get_token_with_scopes(self, scopes): """Searches the cache for any tokens that have the requested scopes. It will prefer to return tokens whose expires_at is still before the current time, but if no such tokens exist it will return the possibly expired token: it might be refreshable. :param scopes: List of scopes that need to be in the returned token :rtype: (string, dict) or None :returns: Token UUID and contents or None if no applicable tokens were found """ possible_token = None self.debug('Trying to get token with scopes %s', scopes) for uuid in self._cache: self.debug('Checking %s', uuid) token = self._cache[uuid] if token['idp'] != self.idp: self.debug('Incorrect idp') continue if not set(scopes).issubset(set(token['scopes'])): self.debug('Missing scope: %s not subset of %s', set(scopes), set(token['scopes'])) continue if token['expires_at'] < time.time(): # This is a token that's supposed to still be valid, prefer it # over any others we have self.debug('Not yet expired, returning') return uuid, token # This is a token that may or may not still be valid self.debug('Possible') possible_token = (uuid, token) if possible_token: self.debug('Returning possible token') return possible_token def _idp_url(self, method): """Returns the IdP URL for the requested method. :param method: The method name in the IdP mapping dict. :rtype: string :returns: The IdP URL """ if method in self.idp_mapping: return self.idp + self.idp_mapping[method] else: return ValueError('Idp Mapping did not include path for %s' % method) def _refresh_token(self, uuid): """Tries to refresh a token and put the refreshed token in self._cache The caller is responsible for either removing the token if it could not be refreshed or saving the cache if renewal was succesful. :param uuid: The UUID of the cached token to attempt to refresh. :rtype: bool :returns: True if the token was succesfully refreshed, False otherwise """ oldtoken = self._cache[uuid] self.debug('Refreshing token %s', uuid) data = {'client_id': self.client_id, 'grant_type': 'refresh_token', 'refresh_token': oldtoken['refresh_token']} if self.client_secret: data['client_secret'] = self.client_secret resp = requests.request( 'POST', self._idp_url('Token'), data=data) resp.raise_for_status() resp = resp.json() if 'error' in resp: self.debug('Unable to refresh, error: %s', resp['error']) return False self._update_token( uuid, {'access_token': resp['access_token'], 'token_type': resp['token_type'], 'refresh_token': resp['refresh_token'], 'expires_at': time.time() + resp['expires_in']}) self.debug('Refreshed until %s', self._cache[uuid]['expires_at']) return True def _get_server(self, app): """This function returns a SimpleServer with an available WEB_PORT.""" for port in WEB_PORTS: try: server = simple_server.make_server('0.0.0.0', port, app) return server except socket.error: # This port did not work. Switch to next one continue def _get_new_token(self, scopes): """This function kicks off some magic. We will start a new webserver on one of the WEB_PORTS, and then either show the user a URL, or if possible, kick off their browser. This URL will be the Authorization endpoint of the IdP with a request for our client_id to get a new token with the specified scopes. The webserver will then need to catch the return with either an Authorization Code (that we will exchange for an access token) or the cancellation message. This function will store the new token in the local cache, add it to the valid cache, and then return the UUID. If the user cancelled (or we got another error), we will return None. """ def _token_app(environ, start_response): query = environ['QUERY_STRING'] split = query.split('&') kv = dict([v.split('=', 1) for v in split]) if 'error' in kv: self.debug('Error code returned: %s (%s)', kv['error'], kv.get('error_description')) self._retrieved_code = False else: self._retrieved_code = kv['code'] # Just return a message start_response('200 OK', [('Content-Type', 'text/plain')]) return [u'You can close this window and return to the CLI'.encode('ascii')] self._retrieved_code = None server = self._get_server(_token_app) if not server: raise Exception('We were unable to instantiate a webserver') return_uri = 'http://localhost:%i/' % server.socket.getsockname()[1] rquery = {} rquery['scope'] = ' '.join(scopes) rquery['response_type'] = 'code' rquery['client_id'] = self.client_id rquery['redirect_uri'] = return_uri rquery['response_mode'] = 'query' query = urlencode(rquery) authz_url = '%s?%s' % (self._idp_url('Authorization'), query) print('Please visit %s to grant authorization' % authz_url, file=self._printfd) webbrowser.open(authz_url) server.handle_request() server.server_close() assert self._retrieved_code is not None if self._retrieved_code is False: # The user cancelled the request self._retrieved_code = None self.debug('User cancelled') return None self.debug('We got an authorization code!') data = {'client_id': self.client_id, 'grant_type': 'authorization_code', 'redirect_uri': return_uri, 'code': self._retrieved_code} if self.client_secret: data['client_secret'] = self.client_secret resp = requests.request( 'POST', self._idp_url('Token'), data=data) resp.raise_for_status() self._retrieved_code = None resp = resp.json() if 'error' in resp: self.debug('Error exchanging authorization code: %s', resp['error']) return None token = {'access_token': resp['access_token'], 'refresh_token': resp['refresh_token'], 'expires_at': time.time() + int(resp['expires_in']), 'idp': self.idp, 'token_type': resp['token_type'], 'scopes': scopes} # AND WE ARE DONE! \o/ return self._add_token(token)
[ "logging.getLogger", "os.path.exists", "os.makedirs", "threading.Lock", "json.dumps", "os.path.join", "webbrowser.open", "requests.request", "uuid.uuid4", "os.path.isdir", "urllib.parse.urlencode", "copy.copy", "time.time", "os.path.expanduser", "wsgiref.simple_server.make_server" ]
[((4037, 4064), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4054, 4064), False, 'import logging\n'), ((4451, 4495), 'os.path.expanduser', 'os.path.expanduser', (["(cachedir or '~/.openidc')"], {}), "(cachedir or '~/.openidc')\n", (4469, 4495), False, 'import os\n'), ((4773, 4779), 'threading.Lock', 'Lock', ([], {}), '()\n', (4777, 4779), False, 'from threading import Lock\n'), ((8738, 8750), 'copy.copy', 'copy', (['kwargs'], {}), '(kwargs)\n', (8742, 8750), False, 'from copy import copy\n'), ((9836, 9878), 'requests.request', 'requests.request', (['method', '*args'], {}), '(method, *args, **ckwargs)\n', (9852, 9878), False, 'import requests\n'), ((10632, 10689), 'os.path.join', 'os.path.join', (['self.cachedir', "('oidc_%s.json' % self.app_id)"], {}), "(self.cachedir, 'oidc_%s.json' % self.app_id)\n", (10644, 10689), False, 'import os\n'), ((19386, 19403), 'urllib.parse.urlencode', 'urlencode', (['rquery'], {}), '(rquery)\n', (19395, 19403), False, 'from urllib.parse import urlencode\n'), ((19584, 19610), 'webbrowser.open', 'webbrowser.open', (['authz_url'], {}), '(authz_url)\n', (19599, 19610), False, 'import webbrowser\n'), ((10932, 10960), 'os.path.isdir', 'os.path.isdir', (['self.cachedir'], {}), '(self.cachedir)\n', (10945, 10960), False, 'import os\n'), ((11019, 11045), 'os.makedirs', 'os.makedirs', (['self.cachedir'], {}), '(self.cachedir)\n', (11030, 11045), False, 'import os\n'), ((11061, 11092), 'os.path.exists', 'os.path.exists', (['self._cachefile'], {}), '(self._cachefile)\n', (11075, 11092), False, 'import os\n'), ((12152, 12161), 'uuid.uuid4', 'uuidgen', ([], {}), '()\n', (12159, 12161), True, 'from uuid import uuid4 as uuidgen\n'), ((11890, 11913), 'json.dumps', 'json.dumps', (['self._cache'], {}), '(self._cache)\n', (11900, 11913), False, 'import json\n'), ((14717, 14728), 'time.time', 'time.time', ([], {}), '()\n', (14726, 14728), False, 'import time\n'), ((17244, 17291), 'wsgiref.simple_server.make_server', 'simple_server.make_server', (['"""0.0.0.0"""', 'port', 'app'], {}), "('0.0.0.0', port, app)\n", (17269, 17291), False, 'from wsgiref import simple_server\n'), ((20747, 20758), 'time.time', 'time.time', ([], {}), '()\n', (20756, 20758), False, 'import time\n'), ((11208, 11222), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (11218, 11222), False, 'import json\n'), ((16930, 16941), 'time.time', 'time.time', ([], {}), '()\n', (16939, 16941), False, 'import time\n')]
import datetime import uuid import simplejson as json from src.db.s3_client import Client as S3Client from decimal import Decimal def get_from_archive(archive_key): ''' Download a VP Save from S3. :param str archive_key: The vp_save data's location (S3 bucket and file path). This value is required. ''' if archive_key is None or '/' not in archive_key: raise ValueError() bucket, key = archive_key.split('/', 1) s3_client = S3Client() try: archive_object = json.loads(s3_client.get_object(bucket, key)['Body'].read(),parse_float=Decimal) except Exception as e: print('ERROR: Error downloading ' + key + ' from ' + bucket + ' bucket. ERROR\n%s' %e) raise return archive_object def build(vp_save={}): ''' Builds and returns a valid vp_save object. Builds a new vp_save object by creating default values for required fields and combines any of the given attributes. ''' vp_save['PK'] = str(uuid.uuid4()) # Set timestamps (for new data) now = datetime.datetime.now().isoformat() vp_save['date_created'] = now vp_save['last_modified'] = now vp_save['item_type'] = 'vp_save' return vp_save def archive(bucket, vp_save_pk, save_data): ''' Archives a vp save data to S3. Uploads the save data object as a JSON file to S3. The location of the archive depends on the bucket and the primary key of the save data. If the upload fails, an exception is raised. If successful, returns the archive location. :param str bucket: The name of the S3 bucket for the archive. This value is required. :param str vp_save_pk: The vp_save PK to use as the name of the JSON file. This value is required. :param obj save_data: The save data object to archive. This value is required. ''' if bucket is None or len(bucket) <= 0: raise ValueError() if vp_save_pk is None or len(vp_save_pk) <= 0: raise ValueError() if not save_data: raise ValueError() archive_file = __archive_key(save_data) + '/' + vp_save_pk + '.json' # Upload curation data to S3 archive bucket. s3_client = S3Client() try: s3_client.put_object( bytes(json.dumps(save_data).encode('UTF-8')), bucket, archive_file ) except Exception as e: print('ERROR: Error uploading ' + archive_file + ' to ' + bucket + ' bucket. ERROR\n%s' %e) raise archive_key_comps = [bucket, archive_file] return '/'.join(archive_key_comps) def __archive_key(save_data): return save_data['PK']
[ "simplejson.dumps", "datetime.datetime.now", "uuid.uuid4", "src.db.s3_client.Client" ]
[((448, 458), 'src.db.s3_client.Client', 'S3Client', ([], {}), '()\n', (456, 458), True, 'from src.db.s3_client import Client as S3Client\n'), ((2070, 2080), 'src.db.s3_client.Client', 'S3Client', ([], {}), '()\n', (2078, 2080), True, 'from src.db.s3_client import Client as S3Client\n'), ((945, 957), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (955, 957), False, 'import uuid\n'), ((1002, 1025), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1023, 1025), False, 'import datetime\n'), ((2127, 2148), 'simplejson.dumps', 'json.dumps', (['save_data'], {}), '(save_data)\n', (2137, 2148), True, 'import simplejson as json\n')]
""" Basic usage =========== This example presents the basic usage of brokenaxes """ import matplotlib.pyplot as plt from brokenaxes import brokenaxes import numpy as np fig = plt.figure(figsize=(5,2)) bax = brokenaxes(xlims=((0, .1), (.4, .7)), ylims=((-1, .7), (.79, 1)), hspace=.05) x = np.linspace(0, 1, 100) bax.plot(x, np.sin(10 * x), label='sin') bax.plot(x, np.cos(10 * x), label='cos') bax.legend(loc=3) bax.set_xlabel('time') bax.set_ylabel('value')
[ "matplotlib.pyplot.figure", "brokenaxes.brokenaxes", "numpy.linspace", "numpy.cos", "numpy.sin" ]
[((180, 206), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 2)'}), '(figsize=(5, 2))\n', (190, 206), True, 'import matplotlib.pyplot as plt\n'), ((212, 299), 'brokenaxes.brokenaxes', 'brokenaxes', ([], {'xlims': '((0, 0.1), (0.4, 0.7))', 'ylims': '((-1, 0.7), (0.79, 1))', 'hspace': '(0.05)'}), '(xlims=((0, 0.1), (0.4, 0.7)), ylims=((-1, 0.7), (0.79, 1)),\n hspace=0.05)\n', (222, 299), False, 'from brokenaxes import brokenaxes\n'), ((294, 316), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (305, 316), True, 'import numpy as np\n'), ((329, 343), 'numpy.sin', 'np.sin', (['(10 * x)'], {}), '(10 * x)\n', (335, 343), True, 'import numpy as np\n'), ((370, 384), 'numpy.cos', 'np.cos', (['(10 * x)'], {}), '(10 * x)\n', (376, 384), True, 'import numpy as np\n')]
README.md exists but content is empty.
Downloads last month
64