Datasets:
File size: 8,887 Bytes
0fe343b 90af67d 0fe343b 162fd48 0fe343b 162fd48 0fe343b 162fd48 0fe343b 162fd48 90af67d 0fe343b cda69e3 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 5ed3124 0fe343b ecd0814 0fe343b ecd0814 0fe343b ecd0814 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 0fe343b 28187f0 2b569e3 28187f0 0fe343b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
language:
- 'no'
- nb
- nn
license: cc-by-nc-4.0
size_categories:
- 10K<n<100K
task_categories:
- token-classification
pretty_name: NoReC TSA
dataset_info:
- config_name: default
features:
- name: idx
dtype: string
- name: tokens
sequence: string
- name: tsa_tags
sequence: string
splits:
- name: train
num_bytes: 2296476
num_examples: 8634
- name: validation
num_bytes: 411562
num_examples: 1531
- name: test
num_bytes: 346288
num_examples: 1272
download_size: 899078
dataset_size: 3054326
- config_name: intensity
features:
- name: idx
dtype: string
- name: tokens
sequence: string
- name: tsa_tags
sequence: string
splits:
- name: train
num_bytes: 2316306
num_examples: 8634
- name: validation
num_bytes: 414972
num_examples: 1531
- name: test
num_bytes: 349228
num_examples: 1272
download_size: 902284
dataset_size: 3080506
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: intensity
data_files:
- split: train
path: intensity/train-*
- split: validation
path: intensity/validation-*
- split: test
path: intensity/test-*
---
# Dataset Card for NoReC TSA
This is a dataset for Targeted Sentiment Analysis (TSA) in Norwegian, derived from the the fine-grained annotations of N[NoReC_fine](https://github.com/ltgoslo/norec_fine). The dataset contains tokenized Norwegian sentences where each token is tagged for sentiment expressed within the sentence towards that token.
Since a sentiment target may be the target of several sentiment expressions, these are resolved to a final sentiment polarity (and intensity) using the conversion script in [NoReC_tsa](https://github.com/ltgoslo/norec_tsa). There is no "mixed" sentiment category. When a target is the receiver of both positive and negative sentiment, the strongest wins. If a tie, the last sentiment wins.
- **Curated by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text) at the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo
- **Funded by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) is funded by the [Research Council of Norway](https://www.forskningsradet.no/en/) (NFR grant number 270908).
- **Shared by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text) at the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo
- **License:** The data is distributed under a [Creative Commons Attribution-NonCommercial licence](https://creativecommons.org/licenses/by-nc/4.0/) (CC BY-NC 4.0). The licence is motivated by the need to block the possibility of third parties redistributing the orignal reviews for commercial purposes. Note that machine learned models, extracted lexicons, embeddings, and similar resources that are created on the basis of NoReC are not considered to contain the original data and so can be freely used also for commercial purposes despite the non-commercial condition.
- **Language:** Norwegian ("no"): Predominantly Bokmål (nb) written variant.
| variant | split | sents | docs |
|:-----|:--------|--------:|-------:|
| nb | dev | 1531 | 44 |
| nb | test | 1272 | 47 |
| nb | train | 8556 | 323 |
| nn | train | 78 | 4 |
## Dataset Sources
- **Repository:** https://github.com/ltgoslo/norec_tsa
- **Paper:** The underlying NoReC_fine dataset is described in the paper [A Fine-Grained Sentiment Dataset for Norwegian](https://aclanthology.org/2020.lrec-1.618/) by Øvrelid et al., published at LREC 2020.
## Uses
The data is intended to be used for training and testing models for TSA token classification; identifying and classifying sentiment targets in Norwegian sentences.
Example models fine-tuned on this dataset can be found at [huggingface.co/collections/ltg/sentiment-analysis](https://huggingface.co/collections/ltg/sentiment-analysis-65c49c7247a0ffffa9897155)
## Dataset Structure
The dataset comes in two flavours:
- `default` configuration yields labels with binary Positive / Negative sentiment description
- `intensity` configuration yields labels with additional sentiment intensity, 1: Slight, 2: Standard, and 3: Strong.
The config is required for accessing the version with intensity. `tsa_data = load_dataset("ltg/norec_tsa", "intensity")`
The dataset comes with predefined train, dev (vallidation) and test splits.
### Data Instances
Config "default" example instance:
```
{'idx': '701363-08-02',
'tokens': ['Vi', 'liker', 'det', '.'],
'tsa_tags': ['O', 'O', 'B-targ-Positive', 'O']}
```
Config "intensity" example instance:
```
{'idx': '701363-08-02',
'tokens': ['Vi', 'liker', 'det', '.'],
'tsa_tags': ['O', 'O', 'B-targ-Positive-2', 'O']}
```
### Data Fields
- idx(str): Unique document-and sentence identifier from [NoReC_fine](https://github.com/ltgoslo/norec_fine). The 6-digit document identifier can also be used to look up the text and its metadata in [NoReC](https://github.com/ltgoslo/norec).
- tokens: (List[str]): List of the tokens in the sentence
- tsa_tags: (List[str]): List of the tags for each token in BIO format. There is no integer representation of these in the dataset.
### Data Splits
```
DatasetDict({
test: Dataset({
features: ['idx', 'tokens', 'tsa_tags'],
num_rows: 1272
})
train: Dataset({
features: ['idx', 'tokens', 'tsa_tags'],
num_rows: 8634
})
validation: Dataset({
features: ['idx', 'tokens', 'tsa_tags'],
num_rows: 1531
})
})
```
## Dataset Creation
### Source Data
The sentiment annotations are aggregated from the NoReC_fine dataset, which in turn comprises a subset of the documents in the [Norwegian Review Corpus](https://github.com/ltgoslo/norec) (NoReC), which contains full-text professional reviews collected from major Norwegian news sources and cover a range of different domains, including literature, movies, video games, restaurants, music and theater, in addition to product reviews across a range of categories. The review articles NoReC were originally donated by the media partners in the SANT project; the Norwegian Broadcasting Corporation (NRK), Schibsted Media Group and Aller Media. The data comprises reviews extracted from eight different Norwegian news sources: Dagbladet, VG, Aftenposten, Bergens Tidende, Fædrelandsvennen, Stavanger Aftenblad, DinSide.no and P3.no. In terms of publishing date the reviews of NoReC mainly cover the time span 2003–2019, although it also includes a handful of reviews dating back as far as 1998.
### Annotators
The original annotations of NoReC_fine that the sentence-level labels here are derived from, were originally created by hired annotators who were all BSc- or MSc-level students in the Language Technology study program at the Department of informatics, University of Oslo.
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
The data does not contain information considered personal or sensitive.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Results obtained on this data might not generalize to texts from other domains or genres. Any biases in the sentiments expressed by the original review authors may carry over to models trained on this data.
## Citation
**BibTeX:**
```
@InProceedings{KutBarVel21,
author = {Andrey Kutuzov and Jeremy Barnes and Erik Velldal and Lilja {\O}vrelid and Stephan Oepen},
title = {Large-Scale Contextualised Language Modelling for Norwegian},
booktitle = {{Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021)}},
year = 2021
}
@InProceedings{OvrMaeBar20,
author = {Lilja {\O}vrelid and Petter M{\ae}hlum and Jeremy Barnes and Erik Velldal},
title = {A Fine-grained Sentiment Dataset for {N}orwegian},
booktitle = {{Proceedings of the 12th Edition of the Language Resources and Evaluation Conference}},
year = 2020,
address = "Marseille, France, 2020"
}
```
## Dataset Card Authors
Egil Rønningstad and Erik Velldal
## Dataset Card Contact
egilron@ifi.uio.no and erikve@ifi.uio.no
|