File size: 3,794 Bytes
47dcb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PsyQA dataset."""


import json
import os

import datasets



_DESCRIPTION = """ FutureWarning
"""
_CITATION = """ null """
_URLs = {
    "train": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/train.json",
    "valid": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/valid.json",
    "test": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/test.json",
}


class PsyQA(datasets.GeneratorBasedBuilder):
    """PsyQA dataset."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="plain_text",
            description="Plain text",
            version=VERSION,
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "question": datasets.Value("string"),
                    "questionID": datasets.Value("int16"),
                    "description": datasets.Value("string"),
                    "keywords": datasets.Value("string"),
                    "answer": datasets.Value("string"),
                    "has_label": datasets.Value("bool"),
                    "label_sequence":datasets.features.Sequence(
                        {
                            "start": datasets.Value("int16"),
                            "end": datasets.Value("int16"),
                            "type": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://huggingface.co/datasets/siyangliu/PsyQA",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["valid"],
                },
            ),
        ]

    def _generate_examples(self, input_filepath, label_filepath=None):
        """Yields examples."""
        with open(input_filepath, encoding="utf-8") as input_file:
            dataset = json.load(input_file)
            idx = 0 
            for meta_data in dataset:
                for ans in meta_data["answers"]:
                    yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans["answer_text"], \
                        "label_sequence": ans["label_sequence"], "questionID": meta_data["questionID"], "has_label": meta_data["has_label"],}
                    idx += 1