File size: 5,314 Bytes
47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c bb0ff34 47dcb7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PsyQA dataset."""
import json
import os
import datasets
_DESCRIPTION = """ FutureWarning
"""
_CITATION = """ null """
_URLs = {
"train": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/train.json",
"valid": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/valid.json",
"test": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/test.json",
}
_STRATEGY={"Approval and Reassurance": "[AR]",
"Interpretation": "[IN]",
"Self-disclosure": "[SELF]",
"Direct Guidance": "[DG]",
"Others": "[OT]",
"Restatement": "[RES]",
"Information": "[INFO]"}
class PsyQA(datasets.GeneratorBasedBuilder):
"""PsyQA dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="wo strategy",
description="",
version=VERSION,
),
datasets.BuilderConfig(
name="w strategy",
description="",
version=VERSION,
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"question": datasets.Value("string"),
"questionID": datasets.Value("int16"),
"description": datasets.Value("string"),
"keywords": datasets.Value("string"),
"answer": datasets.Value("string"),
"has_label": datasets.Value("bool"),
"reference":datasets.features.Sequence(datasets.Value("string"))
# "labels_sequence":datasets.features.Sequence(
# {
# "start": datasets.Value("int16"),
# "end": datasets.Value("int16"),
# "type": datasets.Value("string"),
# }
# ),
}
),
supervised_keys=None,
homepage="https://huggingface.co/datasets/siyangliu/PsyQA",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"strategy": self.config.name == "w strategy"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"strategy": self.config.name == "w strategy"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["valid"],
"strategy": self.config.name == "w strategy"
},
),
]
def _generate_examples(self, filepath, label_filepath=None, strategy=False):
"""Yields examples."""
with open(filepath, encoding="utf-8") as input_file:
dataset = json.load(input_file)
idx = 0
for meta_data in dataset:
reference = [ans["answer_text"] for ans in meta_data["answers"]]
for ans in meta_data["answers"]:
if strategy and ans["labels_sequence"] is None:
continue
elif strategy and ans["labels_sequence"] is not None:
pieces = []
for label in ans["labels_sequence"]:
pieces.append(_STRATEGY[label["type"]]+ans["answer_text"][label["start"]:label["end"]])
ans_w_strategy = "".join(pieces)
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans_w_strategy, \
"questionID": meta_data["questionID"], "has_label": ans["has_label"], "reference": reference}
else:
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans["answer_text"], \
"questionID": meta_data["questionID"], "has_label": ans["has_label"], "reference":reference}
idx += 1
|